\name{mean.SS} \alias{mean.SS} \alias{sum.SS} %\alias{var.SS} \alias{plot.SS} %- Also NEED an '\alias' for EACH other topic documented here. \title{Summary measures and plots for MS-B(S)VAR state-spaces} \description{ Provides a summary and plotting methods for the \code{SS} class objects produced from sampling the posterior of an MSBVAR model. These functions provide the mean regime probabilities and a plotting method for them. } \usage{ \method{mean}{SS}(x, ...) \method{sum}{SS}(x, ...) \method{plot}{SS}(x, ylab="State Probabilities", ...) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{x}{SS class object produced by sampling the posterior of a Markov-switching BVAR model in MSBVAR. These are produced by \code{\link{gibbs.msbvar}}. } \item{ylab}{y-axis label for the regime plot. } \item{\dots}{Other argument or graphics parameters for \code{plot}. } } \details{ The first two provide the sum and mean of the number of time periods in each state of Markov-process. The last produces a time series plot of the regime or state probabilities. These are computed from the Markov Chain Monte Carlo sample computed from \code{\link{gibbs.msbvar}} } \value{ Mean and sum are \eqn{T \times h}{T x h} matrices for the first two summary functions. The plot function generates a plot in the current device. These are the posterior probability measures of the Markov process regimes across \eqn{T} periods. } %\references{ % } \author{ Patrick T. Brandt} %\note{ } \seealso{ \code{\link{gibbs.msbvar}}, \code{\link{msbvar}}} % \examples{ % \dontrun{ % } % } \keyword{ models} \keyword{ hplot}