\name{uc.forecast} \alias{uc.forecast} %\alias{uc.forecast.VAR} %\alias{uc.forecast.BVAR} %\alias{uc.forecast.BSVAR} %- Also NEED an '\alias' for EACH other topic documented here. \title{ Forecast density estimation unconditional forecasts for VAR/BVAR/BSVAR models via MCMC } \description{ Implements unconditional forecast density estimator for VAR/BVAR/BSVAR models described in Waggoner and Zha (1999). The unconditional forecasts place no restriction on the paths of the forecasts (cf. \code{hc.forecast}). The forecast densities are estimated as the posterior sample for the VAR/BVAR/BSVAR model using Markov Chain Monte Carlo with data augmentation to account for the uncertainty of the forecasts and the parameters. This function DOES account for parameter uncertainty in the MCMC algorithm. } \usage{ uc.forecast(varobj, nsteps, burnin, gibbs, exog = NULL) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{varobj}{ VAR or BVAR object produced for a VAR or BVAR using \code{szbvar} or \code{reduced.form.var}} \item{nsteps}{ Number of periods in the forecast horizon } \item{burnin}{ Burnin cycles for the MCMC algorithm } \item{gibbs}{ Number of cycles of the Gibbs sampler after the \code{burnin} that are returned in the output} \item{exog}{ num.exog x nsteps matrix of the exogenous variable values for the forecast horizon. If left at the \code{NULL} default, they are set to zero.} } \details{ Produces a posterior sample of unconstrained VAR/BVAR/BSVAR forecasts via MCMC. This function accounts for the uncertainty of the VAR/BVAR/BSVAR parameters by sampling from them in the computation of the VAR/BVAR/BSVAR forecasts and then regenerating the forecasts. Data augmentation is used to account for the impact of the forecast uncertainty on the parameters. } \value{ A list with three components: \item{yforc }{Forecast sample} \item{orig.y }{Original endogenous variables time series} \item{hyperp }{values of the hyperparameters used in the BVAR estimation / MCMC} } \references{ Brandt, Patrick T. and John R. Freeman. 2006. "Advances in Bayesian Time Series Modeling and the Study of Politics: Theory Testing, Forecasting, and Policy Analysis" \emph{Political Analysis} 14(1):1-36. Waggoner, Daniel F. and Tao Zha. 1999. "Conditional Forecasts in Dynamic Multivariate Models" \emph{Review of Economics and Statistics}, 81(4):639-651.} \author{ Patrick T. Brandt} %\note{ } \seealso{ \code{\link{hc.forecast}}} \examples{ \dontrun{ ## Uses the example from Brandt and Freeman 2006. Will not run unless ## you have their data from http://yule.utdallas.edu or the Politcal ## Analysis website! library(MSBVAR) # Brandt's package for Bayesian VAR models # Read the data and set up as a time series data <- read.dta("levant.weekly.79-03.dta") attach(data) # Set up KEDS data KEDS.data <- ts(cbind(a2i,a2p,i2a,p2a,i2p,p2i), start=c(1979,15), freq=52, names=c("A2I","A2P","I2A","P2A","I2P","P2I")) # Select the sample we want to use. KEDS <- window(KEDS.data, end=c(1988,50)) ################################################################################ # Estimate the BVAR models ################################################################################ # Fit a flat prior model KEDS.BVAR.flat <- szbvar(KEDS, p=6, z=NULL, lambda0=1, lambda1=1, lambda3=1, lambda4=1, lambda5=0, mu5=0, mu6=0, nu=0, qm=4, prior=2, posterior.fit=F) # Reference prior model -- Normal-IW prior pdf KEDS.BVAR.informed <- szbvar(KEDS, p=6, z=NULL, lambda0=0.6, lambda1=0.1, lambda3=2, lambda4=0.5, lambda5=0, mu5=0, mu6=0, nu=ncol(KEDS)+1, qm=4, prior=0, posterior.fit=F) # Set up conditional forecast matrix conditions nsteps <- 12 a2i.condition <- rep(mean(KEDS[,1]) + sqrt(var(KEDS[,1])) , nsteps) yhat<-matrix(c(a2i.condition,rep(0, nsteps*5)), ncol=6) # Set the random number seed so we can replicate the results. set.seed(11023) # Conditional forecasts conditional.forcs.ref <- hc.forecast(KEDS.BVAR.informed, yhat, nsteps, burnin=3000, gibbs=5000, exog=NULL) conditional.forcs.flat <- hc.forecast(KEDS.BVAR.flat, yhat, nsteps, burnin=3000, gibbs=5000, exog=NULL) # Unconditional forecasts unconditional.forcs.ref <-uc.forecast(KEDS.BVAR.informed, nsteps, burnin=3000, gibbs=5000) unconditional.forcs.flat <- uc.forecast(KEDS.BVAR.flat, nsteps, burnin=3000, gibbs=5000) # Set-up and plot the unconditional and conditional forecasts. This # code pulls for the forecasts for I2P and P2I and puts them into the # appropriate array for the figures we want to generate. uc.flat <- NULL hc.flat <- NULL uc.ref <- NULL hc.ref <- NULL uc.flat$forecast <- unconditional.forcs.flat$forecast[,,5:6] hc.flat$forecast <- conditional.forcs.flat$forecast[,,5:6] uc.ref$forecast <- unconditional.forcs.ref$forecast[,,5:6] hc.ref$forecast <- conditional.forcs.ref$forecast[,,5:6] par(mfrow=c(2,2), omi=c(0.25,0.5,0.25,0.25)) plot(uc.flat,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"), compare.level=KEDS[nrow(KEDS),5:6], lwd=2) plot(hc.ref,hc.flat, probs=c(0.16, 0.84), varnames=c("I2P", "P2I"), compare.level=KEDS[nrow(KEDS),5:6], lwd=2) } } \keyword{ ts} \keyword{ models}