/* vcfTrack -- handlers for Variant Call Format data. */ #ifdef USE_TABIX #include "common.h" #include "dystring.h" #include "errCatch.h" #include "hCommon.h" #include "hdb.h" #include "hgc.h" #include "htmshell.h" #include "jsHelper.h" #if (defined USE_TABIX && defined KNETFILE_HOOKS) #include "knetUdc.h" #include "udc.h" #endif//def USE_TABIX && KNETFILE_HOOKS #include "pgSnp.h" #include "regexHelper.h" #include "trashDir.h" #include "vcf.h" #include "vcfUi.h" #define NA "n/a" static void printKeysWithDescriptions(struct vcfFile *vcff, int wordCount, char **words, struct vcfInfoDef *infoDefs) /* Given an array of keys, print out a list of values with * descriptions if descriptions are available. */ { int i; for (i = 0; i < wordCount; i++) { if (i > 0) printf(", "); char *key = words[i]; const struct vcfInfoDef *def = vcfInfoDefForKey(vcff, key); char *htmlKey = htmlEncode(key); if (def != NULL) printf("%s (%s)", htmlKey, def->description); else printf("%s", htmlKey); } printf("
\n"); } static void vcfAltAlleleDetails(struct vcfRecord *rec, char **displayAls) /* If VCF header specifies any symbolic alternate alleles, pull in descriptions. */ { printf("Alternate allele(s): "); if (rec->alleleCount < 2 || sameString(rec->alleles[1], ".")) { printf(NA"
\n"); return; } struct vcfFile *vcff = rec->file; printKeysWithDescriptions(vcff, rec->alleleCount-1, &(displayAls[1]), vcff->altDefs); } static void vcfQualDetails(struct vcfRecord *rec) /* If VCF header specifies a quality/confidence score (not "."), print it out. */ { printf("Quality/confidence score: %s
\n", sameString(rec->qual, ".") ? NA : rec->qual); } static void vcfFilterDetails(struct vcfRecord *rec) /* If VCF header specifies any filters, pull in descriptions. */ { if (rec->filterCount == 0 || sameString(rec->filters[0], ".")) printf("Filter: "NA"
\n"); else if (rec->filterCount == 1 && sameString(rec->filters[0], "PASS")) printf("Filter: PASS
\n"); else { printf("Filter failures: "); printf("\n"); struct vcfFile *vcff = rec->file; printKeysWithDescriptions(vcff, rec->filterCount, rec->filters, vcff->filterDefs); printf("\n"); } } static void vcfInfoDetails(struct vcfRecord *rec) /* Expand info keys to descriptions, then print out keys and values. */ { if (rec->infoCount == 0) return; struct vcfFile *vcff = rec->file; puts("INFO column annotations:
"); puts(""); int i; for (i = 0; i < rec->infoCount; i++) { struct vcfInfoElement *el = &(rec->infoElements[i]); const struct vcfInfoDef *def = vcfInfoDefForKey(vcff, el->key); if (def == NULL) continue; printf("\n"); } puts("
%s: ", el->key); int j; enum vcfInfoType type = def->type; if (type == vcfInfoFlag && el->count == 0) printf("Yes"); // no values, so we can't call vcfPrintDatum... // However, if this is older VCF, type vcfInfoFlag might have a value. for (j = 0; j < el->count; j++) { if (j > 0) printf(", "); if (el->missingData[j]) printf("."); else vcfPrintDatum(stdout, el->values[j], type); } if (def != NULL) printf(" %s", def->description); else printf(""); printf("
"); } static void vcfGenotypeTable(struct vcfRecord *rec, char *track, char **displayAls) /* Put the table containing details about each genotype into a collapsible section. */ { static struct dyString *tmp1 = NULL; if (tmp1 == NULL) tmp1 = dyStringNew(0); jsBeginCollapsibleSection(cart, track, "genotypes", "Detailed genotypes", FALSE); dyStringClear(tmp1); dyStringAppend(tmp1, rec->format); struct vcfFile *vcff = rec->file; enum vcfInfoType formatTypes[256]; char *formatKeys[256]; int formatCount = chopString(tmp1->string, ":", formatKeys, ArraySize(formatKeys)); puts("Genotype info key:
"); int i; for (i = 0; i < formatCount; i++) { if (sameString(formatKeys[i], vcfGtGenotype)) continue; const struct vcfInfoDef *def = vcfInfoDefForGtKey(vcff, formatKeys[i]); char *desc = def ? def->description : "not described in VCF header"; printf("  %s: %s
\n", formatKeys[i], desc); formatTypes[i] = def->type; } hTableStart(); puts("Sample IDGenotypePhased?"); for (i = 0; i < formatCount; i++) { if (sameString(formatKeys[i], vcfGtGenotype)) continue; printf("%s", formatKeys[i]); } puts("\n"); for (i = 0; i < vcff->genotypeCount; i++) { struct vcfGenotype *gt = &(rec->genotypes[i]); char *hapA = ".", *hapB = "."; if (gt->hapIxA >= 0) hapA = displayAls[(unsigned char)gt->hapIxA]; if (gt->isHaploid) hapB = ""; else if (gt->hapIxB >= 0) hapB = displayAls[(unsigned char)gt->hapIxB]; char sep = gt->isHaploid ? ' ' : gt->isPhased ? '|' : '/'; char *phasing = gt->isHaploid ? NA : gt->isPhased ? "Y" : "n"; printf("%s%s%c%s%s", vcff->genotypeIds[i], hapA, sep, hapB, phasing); int j; for (j = 0; j < gt->infoCount; j++) { if (sameString(formatKeys[j], vcfGtGenotype)) continue; printf(""); struct vcfInfoElement *el = &(gt->infoElements[j]); int k; for (k = 0; k < el->count; k++) { if (k > 0) printf(", "); if (el->missingData[k]) printf("."); else vcfPrintDatum(stdout, el->values[k], formatTypes[j]); } printf(""); } puts(""); } hTableEnd(); jsEndCollapsibleSection(); } static void ignoreEm(char *format, va_list args) /* Ignore warnings from genotype parsing -- when there's one, there * are usually hundreds more just like it. */ { } static void vcfGenotypesDetails(struct vcfRecord *rec, char *track, char **displayAls) /* Print summary of allele and genotype frequency, plus collapsible section * with table of genotype details. */ { struct vcfFile *vcff = rec->file; if (vcff->genotypeCount == 0) return; // Wrapper table for collapsible section: puts(""); pushWarnHandler(ignoreEm); vcfParseGenotypes(rec); popWarnHandler(); // Tally genotypes and alleles for summary: int refs = 0, alts = 0, unks = 0; int refRefs = 0, refAlts = 0, altAlts = 0, gtUnk = 0, gtOther = 0, phasedGts = 0; int i; for (i = 0; i < vcff->genotypeCount; i++) { struct vcfGenotype *gt = &(rec->genotypes[i]); if (gt->isPhased) phasedGts++; if (gt->hapIxA == 0) refs++; else if (gt->hapIxA > 0) alts++; else unks++; if (!gt->isHaploid) { if (gt->hapIxB == 0) refs++; else if (gt->hapIxB > 0) alts++; else unks++; if (gt->hapIxA == 0 && gt->hapIxB == 0) refRefs++; else if (gt->hapIxA == 1 && gt->hapIxB == 1) altAlts++; else if ((gt->hapIxA == 1 && gt->hapIxB == 0) || (gt->hapIxA == 0 && gt->hapIxB == 1)) refAlts++; else if (gt->hapIxA < 0 || gt->hapIxB < 0) gtUnk++; else gtOther++; } } printf("Genotype count: %d", vcff->genotypeCount); if (differentString(seqName, "chrY")) printf(" (%d phased)", phasedGts); else printf(" (haploid)"); puts("
"); int totalAlleles = refs + alts + unks; double refAf = (double)refs/totalAlleles; double altAf = (double)alts/totalAlleles; printf("Alleles: %s: %d (%.3f%%); %s: %d (%.3f%%)", displayAls[0], refs, 100*refAf, displayAls[1], alts, 100*altAf); if (unks > 0) printf("; unknown: %d (%.3f%%)", unks, 100 * (double)unks/totalAlleles); puts("
"); // Should be a better way to detect haploid chromosomes than comparison with "chrY": if (vcff->genotypeCount > 1 && differentString(seqName, "chrY")) { printf("Genotypes: %s/%s: %d (%.3f%%); %s/%s: %d (%.3f%%); %s/%s: %d (%.3f%%)", displayAls[0], displayAls[0], refRefs, 100*(double)refRefs/vcff->genotypeCount, displayAls[0], displayAls[1], refAlts, 100*(double)refAlts/vcff->genotypeCount, displayAls[1], displayAls[1], altAlts, 100*(double)altAlts/vcff->genotypeCount); if (gtUnk > 0) printf("; unknown: %d (%.3f%%)", gtUnk, 100*(double)gtUnk/vcff->genotypeCount); if (gtOther > 0) printf("; other: %d (%.3f%%)", gtOther, 100*(double)gtOther/vcff->genotypeCount); printf("
\n"); if (rec->alleleCount == 2) printf("Hardy-Weinberg equilibrium: " "P(%s/%s) = %.3f%%; P(%s/%s) = %.3f%%; P(%s/%s) = %.3f%%
", displayAls[0], displayAls[0], 100*refAf*refAf, displayAls[0], displayAls[1], 100*2*refAf*altAf, displayAls[1], displayAls[1], 100*altAf*altAf); } vcfGenotypeTable(rec, track, displayAls); puts("
"); } static void pgSnpCodingDetail(struct vcfRecord *rec) /* Translate rec into pgSnp (with proper chrom name) and call Belinda's * coding effect predictor from pgSnp details. */ { char *genePredTable = "knownGene"; if (hTableExists(database, genePredTable)) { struct pgSnp *pgs = pgSnpFromVcfRecord(rec); if (!sameString(rec->chrom, seqName)) // rec->chrom might be missing "chr" prefix: pgs->chrom = seqName; printSeqCodDisplay(database, pgs, genePredTable); } } static void abbreviateLongSeq(char *seqIn, int endLength, boolean showLength, struct dyString *dy) /* If seqIn is longer than 2*endLength plus abbreviation fudge, abbreviate it * to its first endLength bases, ellipsis that says how many bases are skipped, * and its last endLength bases; add result to dy. */ { int threshold = 2*endLength + 30; int seqInLen = strlen(seqIn); if (seqInLen > threshold) { dyStringAppendN(dy, seqIn, endLength); dyStringAppend(dy, "..."); if (showLength) { int skippedLen = seqInLen-2*endLength; dyStringPrintf(dy, "<%d bases>...", skippedLen); } dyStringAppend(dy, seqIn+seqInLen-endLength); } else dyStringAppend(dy, seqIn); } static void makeDisplayAlleles(struct vcfRecord *rec, boolean showLeftBase, char leftBase, int endLength, boolean showLength, boolean encodeHtml, char **displayAls) /* If necessary, show the left base that we trimmed and/or abbreviate long sequences. */ { struct dyString *dy = dyStringNew(128); int i; for (i = 0; i < rec->alleleCount; i++) { dyStringClear(dy); if (showLeftBase) dyStringPrintf(dy, "(%c)", leftBase); abbreviateLongSeq(rec->alleles[i], endLength, showLength, dy); if (encodeHtml) displayAls[i] = htmlEncode(dy->string); else displayAls[i] = cloneString(dy->string); } } static void vcfRecordDetails(struct trackDb *tdb, struct vcfRecord *rec) /* Display the contents of a single line of VCF, assumed to be from seqName * (using seqName instead of rec->chrom because rec->chrom might lack "chr"). */ { printf("Name: %s
\n", rec->name); // Since these are variants, if it looks like a dbSNP or dbVar ID, provide a link: if (regexMatch(rec->name, "^rs[0-9]+$")) { printf("dbSNP: "); printDbSnpRsUrl(rec->name, "%s", rec->name); puts("
"); } else if (regexMatch(rec->name, "^[en]ss?v[0-9]+$")) { printf("dbVar: "); printf("%s
\n", rec->name, rec->name); } printCustomUrl(tdb, rec->name, TRUE); static char *formName = "vcfCfgHapCenter"; printf("
\n", formName, hgTracksName()); cartSaveSession(cart); vcfCfgHaplotypeCenter(cart, tdb, tdb->track, FALSE, rec->file, rec->name, seqName, rec->chromStart, formName); printf("
\n"); char leftBase = rec->alleles[0][0]; unsigned int vcfStart = vcfRecordTrimIndelLeftBase(rec); boolean showLeftBase = (rec->chromStart == vcfStart+1); char *displayAls[rec->alleleCount]; makeDisplayAlleles(rec, showLeftBase, leftBase, 20, TRUE, FALSE, displayAls); printPosOnChrom(seqName, rec->chromStart, rec->chromEnd, NULL, FALSE, rec->name); printf("Reference allele: %s
\n", displayAls[0]); vcfAltAlleleDetails(rec, displayAls); vcfQualDetails(rec); vcfFilterDetails(rec); vcfInfoDetails(rec); pgSnpCodingDetail(rec); makeDisplayAlleles(rec, showLeftBase, leftBase, 5, FALSE, TRUE, displayAls); vcfGenotypesDetails(rec, tdb->track, displayAls); } void doVcfTabixDetails(struct trackDb *tdb, char *item) /* Show details of an alignment from a VCF file compressed and indexed by tabix. */ { #if (defined USE_TABIX && defined KNETFILE_HOOKS) knetUdcInstall(); if (udcCacheTimeout() < 300) udcSetCacheTimeout(300); #endif//def USE_TABIX && KNETFILE_HOOKS int start = cartInt(cart, "o"); int end = cartInt(cart, "t"); struct sqlConnection *conn = hAllocConnTrack(database, tdb); char *fileOrUrl = bbiNameFromSettingOrTableChrom(tdb, conn, tdb->table, seqName); hFreeConn(&conn); int vcfMaxErr = -1; struct vcfFile *vcff = NULL; /* protect against temporary network error */ struct errCatch *errCatch = errCatchNew(); if (errCatchStart(errCatch)) { vcff = vcfTabixFileMayOpen(fileOrUrl, seqName, start, end, vcfMaxErr, -1); } errCatchEnd(errCatch); if (errCatch->gotError) { if (isNotEmpty(errCatch->message->string)) warn("%s", errCatch->message->string); } errCatchFree(&errCatch); if (vcff != NULL) { struct vcfRecord *rec; for (rec = vcff->records; rec != NULL; rec = rec->next) if (rec->chromStart == start && rec->chromEnd == end) // in pgSnp mode, don't get name vcfRecordDetails(tdb, rec); } else printf("Sorry, unable to open %s
\n", fileOrUrl); } #endif // no USE_TABIX