Description

This track shows multiple alignments of 6 vertebrates, including mammalian, amphibian, and fish species, and measurements of evolutionary conservation using phastCons from the PHAST package. The multiple alignments were generated using multiz and other tools in the UCSC/Penn State Bioinformatics comparative genomics alignment pipeline.

PhastCons (which has been used in previous Conservation tracks) is a hidden Markov model-based method that estimates the probability that each nucleotide belongs to a conserved element, based on the multiple alignment. It considers not just each individual alignment column, but also its flanking columns. PhastCons treats alignment gaps and unaligned nucleotides as missing data. The resulting phastCons scores represent probabilities of negative selection and range between 0 and 1.

The species aligned for this track include the mammal, amphibian, and fish clades.

OrganismSpeciesRelease dateUCSC versionalignment type
ZebrafishDanio rerio Dec. 2008danRer6reference species
TetraodonTetraodon nigroviridis Mar. 2007tetNig2MAF Net
SticklebackGasterosteus aculeatus Feb. 2006gasAcu1MAF Net
X. tropicalisXenopus tropicalis Aug. 2005xenTro2MAF Net
MouseMus musculus July 2007mm9Syntenic Net
HumanHomo sapiens Feb. 2009 hg19/GRCh37Syntenic Net

Table 1. Genome assemblies included in the 6-way Conservation track.

Downloads for data in this track are available:

Display Conventions and Configuration

The track configuration options allow the user to display the conservation scores. In full and pack display modes, conservation scores are displayed as a wiggle track (histogram) in which the height reflects the size of the score. The conservation wiggles can be configured in a variety of ways to highlight different aspects of the displayed information. Click the Graph configuration help link for an explanation of the configuration options.

Pairwise alignments of each species to the $organism genome are displayed below the conservation histogram as a grayscale density plot (in pack mode) or as a wiggle (in full mode) that indicates alignment quality. In dense display mode, conservation is shown in grayscale using darker values to indicate higher levels of overall conservation as scored by phastCons.

Checkboxes on the track configuration page allow selection of the species to include in the pairwise display. By default, all 6 species are included in the pairwise display: zebrafish, tetrodon, stickleback, X. tropicalis, mouse, human. Note that excluding species from the pairwise display does not alter the the conservation score display.

To view detailed information about the alignments at a specific position, zoom the display in to 30,000 or fewer bases, then click on the alignment.

Gap Annotation

The Display chains between alignments configuration option enables display of gaps between alignment blocks in the pairwise alignments in a manner similar to the Chain track display. The following conventions are used:

Genomic Breaks

Discontinuities in the genomic context (chromosome, scaffold or region) of the aligned DNA in the aligning species are shown as follows:

Base Level

When zoomed-in to the base-level display, the track shows the base composition of each alignment. The numbers and symbols on the Gaps line indicate the lengths of gaps in the $organism sequence at those alignment positions relative to the longest non-$organism sequence. If there is sufficient space in the display, the size of the gap is shown. If the space is insufficient and the gap size is a multiple of 3, a "*" is displayed; other gap sizes are indicated by "+".

Codon translation is available in base-level display mode if the displayed region is identified as a coding segment. To display this annotation, select the species for translation from the pull-down menu in the Codon Translation configuration section at the top of the page. Then, select one of the following modes:

Codon translation uses the following gene tracks as the basis for translation, depending on the species chosen (Table 2).

Gene TrackSpecies
RefSeqzebrafish, frog
Ensembl Genes v55 stickleback, tetraodon
Known Geneshuman, mouse

Table 2. Gene tracks used for codon translation.

Methods

Pairwise alignments with the zebrafish genome were generated for each species using blastz from repeat-masked genomic sequence. Lineage-specific repeats were removed prior to alignment, then reinserted. Pairwise alignments were then linked into chains using a dynamic programming algorithm that finds maximally scoring chains of gapless subsections of the alignments organized in a kd-tree. The scoring matrix and parameters for pairwise alignment and chaining were tuned for each species based on phylogenetic distance from the reference. High-scoring chains were then placed along the genome, with gaps filled by lower-scoring chains, to produce an alignment net. For more information about the chaining and netting process and parameters for each species, see the description pages for the Chain and Net tracks.

An additional filtering step was introduced in the generation of the 6-way conservation track to reduce the number of paralogs and pseudogenes from the high-quality assemblies and the suspect alignments from the low-quality assemblies: the pairwise alignments of high-quality mammalian sequences were filtered based on synteny.

The resulting best-in-genome pairwise alignments were progressively aligned using multiz/autoMZ, following the tree topology diagrammed above, to produce multiple alignments. The multiple alignments were post-processed to add annotations indicating alignment gaps, genomic breaks, and base quality of the component sequences. The annotated multiple alignments, in MAF format, are available for bulk download. An alignment summary table containing an entry for each alignment block in each species was generated to improve track display performance at large scales. Framing tables were constructed to enable visualization of codons in the multiple alignment display.

Phylogenetic Tree Model

PhastCons is a phylogenetic method that relies on a tree model containing the tree topology, branch lengths representing evolutionary distance at neutrally evolving sites, the background distribution of nucleotides, and a substitution rate matrix. The tree model for this track was generated using the phyloFit program from the PHAST package (REV model, EM algorithm, medium precision) using multiple alignments of 4-fold degenerate sites extracted from the 6-way alignment (msa_view). The 4d sites were derived from the RefSeq gene set, filtered to select single-coverage long transcripts.

PhastCons Conservation

The phastCons program computes conservation scores based on a phylo-HMM, a type of probabilistic model that describes both the process of DNA substitution at each site in a genome and the way this process changes from one site to the next (Felsenstein and Churchill 1996, Yang 1995, Siepel and Haussler 2005). PhastCons uses a two-state phylo-HMM, with a state for conserved regions and a state for non-conserved regions. The value plotted at each site is the posterior probability that the corresponding alignment column was "generated" by the conserved state of the phylo-HMM. These scores reflect the phylogeny (including branch lengths) of the species in question, a continuous-time Markov model of the nucleotide substitution process, and a tendency for conservation levels to be autocorrelated along the genome (i.e., to be similar at adjacent sites). The general reversible (REV) substitution model was used. Unlike many conservation-scoring programs, phastCons does not rely on a sliding window of fixed size; therefore, short highly-conserved regions and long moderately conserved regions can both obtain high scores. More information about phastCons can be found in Siepel et al. 2005.

The phastCons parameters were tuned to produce 5% conserved elements in the genome for the conservation measurement. This parameter set (expected-length=45, target-coverage=0.3, rho=0.3) was then used to generate the conservation scoring.

Credits

This track was created using the following programs:

The phylogenetic tree is based on Murphy et al. (2001) and general consensus in the vertebrate phylogeny community as of March 2007.

References

Phylo-HMMs and phastCons:

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, Clawson H, Spieth J, Hillier LW, Richards S, et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005 Aug;15(8):1034-50.

Chain/Net:

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11484-9.

Multiz:

Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, Roskin KM, Baertsch R, Rosenbloom K, Clawson H, Green ED, et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 2004 Apr;14(4):708-15.

Blastz:

Chiaromonte F, Yap VB, Miller W. Scoring pairwise genomic sequence alignments. Pac Symp Biocomput. 2002;:115-26.

Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D, Miller W. Human-mouse alignments with BLASTZ. Genome Res. 2003 Jan;13(1):103-7.

Phylogenetic Tree:

Murphy WJ, Eizirik E, O'Brien SJ, Madsen O, Scally M, Douady CJ, Teeling E, Ryder OA, Stanhope MJ, de Jong WW, Springer MS. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science. 2001 Dec 14;294(5550):2348-51.