% File src/library/stats/man/SSfpl.Rd % Part of the R package, http://www.R-project.org % Copyright 1995-2010 R Core Team % Distributed under GPL 2 or later \name{SSfpl} \encoding{UTF-8} \title{Self-Starting Nls Four-Parameter Logistic Model} \usage{ SSfpl(input, A, B, xmid, scal) } \alias{SSfpl} \arguments{ \item{input}{a numeric vector of values at which to evaluate the model.} \item{A}{a numeric parameter representing the horizontal asymptote on the left side (very small values of \code{input}).} \item{B}{a numeric parameter representing the horizontal asymptote on the right side (very large values of \code{input}).} \item{xmid}{a numeric parameter representing the \code{input} value at the inflection point of the curve. The value of \code{SSfpl} will be midway between \code{A} and \code{B} at \code{xmid}.} \item{scal}{a numeric scale parameter on the \code{input} axis.} } \description{ This \code{selfStart} model evaluates the four-parameter logistic function and its gradient. It has an \code{initial} attribute that will evaluate initial estimates of the parameters \code{A}, \code{B}, \code{xmid}, and \code{scal} for a given set of data. } \value{ a numeric vector of the same length as \code{input}. It is the value of the expression \code{A+(B-A)/(1+exp((xmid-input)/scal))}. If all of the arguments \code{A}, \code{B}, \code{xmid}, and \code{scal} are names of objects, the gradient matrix with respect to these names is attached as an attribute named \code{gradient}. } \author{\enc{José}{Jose} Pinheiro and Douglas Bates} \seealso{\code{\link{nls}}, \code{\link{selfStart}} } \examples{ Chick.1 <- ChickWeight[ChickWeight$Chick == 1, ] SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only A <- 13; B <- 368; xmid <- 14; scal <- 6 SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient print(getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1), digits = 5) ## Initial values are in fact the converged values fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1) summary(fm1) \dontshow{ require(graphics) xx <- seq(-0.5, 5, len = 101) yy <- 1 + 4 / ( 1 + exp((2-xx))) par(mar = c(0, 0, 3.5, 0)) plot(xx, yy, type = "l", axes = FALSE, ylim = c(0,6), xlim = c(-1, 5), xlab = "", ylab = "", lwd = 2, main = "Parameters in the SSfpl model") usr <- par("usr") arrows(usr[1], 0, usr[2], 0, length = 0.1, angle = 25) arrows(0, usr[3], 0, usr[4], length = 0.1, angle = 25) text(usr[2] - 0.2, 0.1, "x", adj = c(1, 0)) text(-0.1, usr[4], "y", adj = c(1, 1)) abline(h = 5, lty = 2, lwd = 0) arrows(-0.8, 2.1, -0.8, 0, length = 0.1, angle = 25) arrows(-0.8, 2.9, -0.8, 5, length = 0.1, angle = 25) text(-0.8, 2.5, expression(phi[1]), adj = c(0.5, 0.5)) abline(h = 1, lty = 2, lwd = 0) arrows(-0.3, 0.25, -0.3, 0, length = 0.07, angle = 25) arrows(-0.3, 0.75, -0.3, 1, length = 0.07, angle = 25) text(-0.3, 0.5, expression(phi[2]), adj = c(0.5, 0.5)) segments(2, 0, 2, 3.3, lty = 2, lwd = 0.75) text(2, 3.3, expression(phi[3]), adj = c(0.5, 0)) segments(3, 1+4/(1+exp(-1)) - 0.025, 3, 2.5, lty = 2, lwd = 0.75) arrows(2.3, 2.7, 2.0, 2.7, length = 0.08, angle = 25) arrows(2.7, 2.7, 3.0, 2.7, length = 0.08, angle = 25) text(2.5, 2.7, expression(phi[4]), adj = c(0.5, 0.5)) } } \keyword{models}