#include "pysam.h" #include #include #include "bam.h" #include "kstring.h" #include "bam2bcf.h" #include "errmod.h" #include "bcftools/bcf.h" extern void ks_introsort_uint32_t(size_t n, uint32_t a[]); #define CALL_ETA 0.03f #define CALL_MAX 256 #define CALL_DEFTHETA 0.83f #define DEF_MAPQ 20 #define CAP_DIST 25 bcf_callaux_t *bcf_call_init(double theta, int min_baseQ) { bcf_callaux_t *bca; if (theta <= 0.) theta = CALL_DEFTHETA; bca = calloc(1, sizeof(bcf_callaux_t)); bca->capQ = 60; bca->openQ = 40; bca->extQ = 20; bca->tandemQ = 100; bca->min_baseQ = min_baseQ; bca->e = errmod_init(1. - theta); bca->min_frac = 0.002; bca->min_support = 1; return bca; } void bcf_call_destroy(bcf_callaux_t *bca) { if (bca == 0) return; errmod_destroy(bca->e); free(bca->bases); free(bca->inscns); free(bca); } /* ref_base is the 4-bit representation of the reference base. It is * negative if we are looking at an indel. */ int bcf_call_glfgen(int _n, const bam_pileup1_t *pl, int ref_base, bcf_callaux_t *bca, bcf_callret1_t *r) { static int *var_pos = NULL, nvar_pos = 0; int i, n, ref4, is_indel, ori_depth = 0; memset(r, 0, sizeof(bcf_callret1_t)); if (ref_base >= 0) { ref4 = bam_nt16_nt4_table[ref_base]; is_indel = 0; } else ref4 = 4, is_indel = 1; if (_n == 0) return -1; // enlarge the bases array if necessary if (bca->max_bases < _n) { bca->max_bases = _n; kroundup32(bca->max_bases); bca->bases = (uint16_t*)realloc(bca->bases, 2 * bca->max_bases); } // fill the bases array memset(r, 0, sizeof(bcf_callret1_t)); for (i = n = 0; i < _n; ++i) { const bam_pileup1_t *p = pl + i; int q, b, mapQ, baseQ, is_diff, min_dist, seqQ; // set base if (p->is_del || p->is_refskip || (p->b->core.flag&BAM_FUNMAP)) continue; ++ori_depth; baseQ = q = is_indel? p->aux&0xff : (int)bam1_qual(p->b)[p->qpos]; // base/indel quality seqQ = is_indel? (p->aux>>8&0xff) : 99; if (q < bca->min_baseQ) continue; if (q > seqQ) q = seqQ; mapQ = p->b->core.qual < 255? p->b->core.qual : DEF_MAPQ; // special case for mapQ==255 mapQ = mapQ < bca->capQ? mapQ : bca->capQ; if (q > mapQ) q = mapQ; if (q > 63) q = 63; if (q < 4) q = 4; if (!is_indel) { b = bam1_seqi(bam1_seq(p->b), p->qpos); // base b = bam_nt16_nt4_table[b? b : ref_base]; // b is the 2-bit base is_diff = (ref4 < 4 && b == ref4)? 0 : 1; } else { b = p->aux>>16&0x3f; is_diff = (b != 0); } bca->bases[n++] = q<<5 | (int)bam1_strand(p->b)<<4 | b; // collect annotations if (b < 4) r->qsum[b] += q; ++r->anno[0<<2|is_diff<<1|bam1_strand(p->b)]; min_dist = p->b->core.l_qseq - 1 - p->qpos; if (min_dist > p->qpos) min_dist = p->qpos; if (min_dist > CAP_DIST) min_dist = CAP_DIST; r->anno[1<<2|is_diff<<1|0] += baseQ; r->anno[1<<2|is_diff<<1|1] += baseQ * baseQ; r->anno[2<<2|is_diff<<1|0] += mapQ; r->anno[2<<2|is_diff<<1|1] += mapQ * mapQ; r->anno[3<<2|is_diff<<1|0] += min_dist; r->anno[3<<2|is_diff<<1|1] += min_dist * min_dist; } r->depth = n; r->ori_depth = ori_depth; // glfgen errmod_cal(bca->e, n, 5, bca->bases, r->p); // Calculate the Variant Distance Bias (make it optional?) if ( nvar_pos < _n ) { nvar_pos = _n; var_pos = realloc(var_pos,sizeof(int)*nvar_pos); } int alt_dp=0, read_len=0; for (i=0; i<_n; i++) { const bam_pileup1_t *p = pl + i; if ( bam1_seqi(bam1_seq(p->b),p->qpos) == ref_base ) continue; var_pos[alt_dp] = p->qpos; if ( (bam1_cigar(p->b)[0]&BAM_CIGAR_MASK)==4 ) var_pos[alt_dp] -= bam1_cigar(p->b)[0]>>BAM_CIGAR_SHIFT; alt_dp++; read_len += p->b->core.l_qseq; } float mvd=0; int j; n=0; for (i=0; imvd[0] = n ? mvd/n : 0; r->mvd[1] = alt_dp; r->mvd[2] = alt_dp ? read_len/alt_dp : 0; return r->depth; } void calc_vdb(int n, const bcf_callret1_t *calls, bcf_call_t *call) { // Variant distance bias. Samples merged by means of DP-weighted average. float weight=0, tot_prob=0; int i; for (i=0; i2*mu ? 0 : sin(mvd*3.14/2/mu) / (4*mu/3.14); } else { // Scaled gaussian curve, crude approximation, but behaves well. Using fixed depth for bigger depths. if ( dp>5 ) dp = 5; float sigma2 = (read_len/1.9/(dp+1)) * (read_len/1.9/(dp+1)); float norm = 1.125*sqrt(2*3.14*sigma2); float mu = read_len/2.9; if ( mvd < mu ) prob = exp(-(mvd-mu)*(mvd-mu)/2/sigma2)/norm; else prob = exp(-(mvd-mu)*(mvd-mu)/3.125/sigma2)/norm; } //fprintf(pysamerr,"dp=%d mvd=%d read_len=%d -> prob=%f\n", dp,mvd,read_len,prob); tot_prob += prob*dp; weight += dp; } tot_prob = weight ? tot_prob/weight : 1; //fprintf(pysamerr,"prob=%f\n", tot_prob); call->vdb = tot_prob; } int bcf_call_combine(int n, const bcf_callret1_t *calls, int ref_base /*4-bit*/, bcf_call_t *call) { int ref4, i, j, qsum[4]; int64_t tmp; if (ref_base >= 0) { call->ori_ref = ref4 = bam_nt16_nt4_table[ref_base]; if (ref4 > 4) ref4 = 4; } else call->ori_ref = -1, ref4 = 0; // calculate qsum memset(qsum, 0, 4 * sizeof(int)); for (i = 0; i < n; ++i) for (j = 0; j < 4; ++j) qsum[j] += calls[i].qsum[j]; for (j = 0; j < 4; ++j) qsum[j] = qsum[j] << 2 | j; // find the top 2 alleles for (i = 1; i < 4; ++i) // insertion sort for (j = i; j > 0 && qsum[j] < qsum[j-1]; --j) tmp = qsum[j], qsum[j] = qsum[j-1], qsum[j-1] = tmp; // set the reference allele and alternative allele(s) for (i = 0; i < 5; ++i) call->a[i] = -1; call->unseen = -1; call->a[0] = ref4; for (i = 3, j = 1; i >= 0; --i) { if ((qsum[i]&3) != ref4) { if (qsum[i]>>2 != 0) call->a[j++] = qsum[i]&3; else break; } } if (ref_base >= 0) { // for SNPs, find the "unseen" base if (((ref4 < 4 && j < 4) || (ref4 == 4 && j < 5)) && i >= 0) call->unseen = j, call->a[j++] = qsum[i]&3; call->n_alleles = j; } else { call->n_alleles = j; if (call->n_alleles == 1) return -1; // no reliable supporting read. stop doing anything } // set the PL array if (call->n < n) { call->n = n; call->PL = realloc(call->PL, 15 * n); } { int x, g[15], z; double sum_min = 0.; x = call->n_alleles * (call->n_alleles + 1) / 2; // get the possible genotypes for (i = z = 0; i < call->n_alleles; ++i) for (j = 0; j <= i; ++j) g[z++] = call->a[j] * 5 + call->a[i]; for (i = 0; i < n; ++i) { uint8_t *PL = call->PL + x * i; const bcf_callret1_t *r = calls + i; float min = 1e37; for (j = 0; j < x; ++j) if (min > r->p[g[j]]) min = r->p[g[j]]; sum_min += min; for (j = 0; j < x; ++j) { int y; y = (int)(r->p[g[j]] - min + .499); if (y > 255) y = 255; PL[j] = y; } } // if (ref_base < 0) fprintf(pysamerr, "%d,%d,%f,%d\n", call->n_alleles, x, sum_min, call->unseen); call->shift = (int)(sum_min + .499); } // combine annotations memset(call->anno, 0, 16 * sizeof(int)); for (i = call->depth = call->ori_depth = 0, tmp = 0; i < n; ++i) { call->depth += calls[i].depth; call->ori_depth += calls[i].ori_depth; for (j = 0; j < 16; ++j) call->anno[j] += calls[i].anno[j]; } calc_vdb(n, calls, call); return 0; } int bcf_call2bcf(int tid, int pos, bcf_call_t *bc, bcf1_t *b, bcf_callret1_t *bcr, int is_SP, const bcf_callaux_t *bca, const char *ref) { extern double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two); kstring_t s; int i, j; b->n_smpl = bc->n; b->tid = tid; b->pos = pos; b->qual = 0; s.s = b->str; s.m = b->m_str; s.l = 0; kputc('\0', &s); if (bc->ori_ref < 0) { // an indel // write REF kputc(ref[pos], &s); for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); kputc('\0', &s); // write ALT kputc(ref[pos], &s); for (i = 1; i < 4; ++i) { if (bc->a[i] < 0) break; if (i > 1) { kputc(',', &s); kputc(ref[pos], &s); } if (bca->indel_types[bc->a[i]] < 0) { // deletion for (j = -bca->indel_types[bc->a[i]]; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); } else { // insertion; cannot be a reference unless a bug char *inscns = &bca->inscns[bc->a[i] * bca->maxins]; for (j = 0; j < bca->indel_types[bc->a[i]]; ++j) kputc("ACGTN"[(int)inscns[j]], &s); for (j = 0; j < bca->indelreg; ++j) kputc(ref[pos+1+j], &s); } } kputc('\0', &s); } else { // a SNP kputc("ACGTN"[bc->ori_ref], &s); kputc('\0', &s); for (i = 1; i < 5; ++i) { if (bc->a[i] < 0) break; if (i > 1) kputc(',', &s); kputc(bc->unseen == i? 'X' : "ACGT"[bc->a[i]], &s); } kputc('\0', &s); } kputc('\0', &s); // INFO if (bc->ori_ref < 0) kputs("INDEL;", &s); kputs("DP=", &s); kputw(bc->ori_depth, &s); kputs(";I16=", &s); for (i = 0; i < 16; ++i) { if (i) kputc(',', &s); kputw(bc->anno[i], &s); } if ( bc->vdb!=1 ) { ksprintf(&s, ";VDB=%.4f", bc->vdb); } kputc('\0', &s); // FMT kputs("PL", &s); if (bcr) { kputs(":DP", &s); if (is_SP) kputs(":SP", &s); } kputc('\0', &s); b->m_str = s.m; b->str = s.s; b->l_str = s.l; bcf_sync(b); memcpy(b->gi[0].data, bc->PL, b->gi[0].len * bc->n); if (bcr) { uint16_t *dp = (uint16_t*)b->gi[1].data; int32_t *sp = is_SP? b->gi[2].data : 0; for (i = 0; i < bc->n; ++i) { bcf_callret1_t *p = bcr + i; dp[i] = p->depth < 0xffff? p->depth : 0xffff; if (is_SP) { if (p->anno[0] + p->anno[1] < 2 || p->anno[2] + p->anno[3] < 2 || p->anno[0] + p->anno[2] < 2 || p->anno[1] + p->anno[3] < 2) { sp[i] = 0; } else { double left, right, two; int x; kt_fisher_exact(p->anno[0], p->anno[1], p->anno[2], p->anno[3], &left, &right, &two); x = (int)(-4.343 * log(two) + .499); if (x > 255) x = 255; sp[i] = x; } } } } return 0; }