# $Id: Statistics.pm 16123 2009-09-17 12:57:27Z cjfields $ # # BioPerl module for Bio::PopGen::Statistics # # Please direct questions and support issues to # # Cared for by Jason Stajich # # Copyright Jason Stajich # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::PopGen::Statistics - Population Genetics statistical tests =head1 SYNOPSIS use Bio::PopGen::Statistics; use Bio::AlignIO; use Bio::PopGen::IO; use Bio::PopGen::Simulation::Coalescent; my $sim = Bio::PopGen::Simulation::Coalescent->new( -sample_size => 12); my $tree = $sim->next_tree; $sim->add_Mutations($tree,20); my $stats = Bio::PopGen::Statistics->new(); my $individuals = [ $tree->get_leaf_nodes]; my $pi = $stats->pi($individuals); my $D = $stats->tajima_D($individuals); # Alternatively to do this on input data from # See the tests in t/PopGen.t for more examples my $parser = Bio::PopGen::IO->new(-format => 'prettybase', -file => 't/data/popstats.prettybase'); my $pop = $parser->next_population; # Note that you can also call the stats as a class method if you like # the only reason to instantiate it (as above) is if you want # to set the verbosity for debugging $pi = Bio::PopGen::Statistics->pi($pop); $theta = Bio::PopGen::Statistics->theta($pop); # Pi and Theta also take additional arguments, # see the documentation for more information use Bio::PopGen::Utilities; use Bio::AlignIO; my $in = Bio::AlignIO->new(-file => 't/data/t7.aln', -format => 'clustalw'); my $aln = $in->next_aln; # get a population, each sequence is an individual and # for the default case, every site which is not monomorphic # is a 'marker'. Each individual will have a 'genotype' for the # site which will be the specific base in the alignment at that # site my $pop = Bio::PopGen::Utilities->aln_to_population(-alignment => $aln); =head1 DESCRIPTION This object is intended to provide implementations some standard population genetics statistics about alleles in populations. This module was previously named Bio::Tree::Statistics. This object is a place to accumulate routines for calculating various statistics from the coalescent simulation, marker/allele, or from aligned sequence data given that you can calculate alleles, number of segregating sites. Currently implemented: Fu and Li's D (fu_and_li_D) Fu and Li's D* (fu_and_li_D_star) Fu and Li's F (fu_and_li_F) Fu and Li's F* (fu_and_li_F_star) Tajima's D (tajima_D) Watterson's theta (theta) pi (pi) - number of pairwise differences composite_LD (composite_LD) McDonald-Kreitman (mcdonald_kreitman or MK) Count based methods also exist in case you have already calculated the key statistics (seg sites, num individuals, etc) and just want to compute the statistic. In all cases where a the method expects an arrayref of L objects and L object will also work. =head2 REFERENCES Fu Y.X and Li W.H. (1993) "Statistical Tests of Neutrality of Mutations." Genetics 133:693-709. Fu Y.X. (1996) "New Statistical Tests of Neutrality for DNA samples from a Population." Genetics 143:557-570. McDonald J, Kreitman M. Tajima F. (1989) "Statistical method for testing the neutral mutation hypothesis by DNA polymorphism." Genetics 123:585-595. =head2 CITING THIS WORK Please see this reference for use of this implementation. Stajich JE and Hahn MW "Disentangling the Effects of Demography and Selection in Human History." (2005) Mol Biol Evol 22(1):63-73. If you use these Bio::PopGen modules please cite the Bioperl publication (see FAQ) and the above reference. =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHOR - Jason Stajich, Matthew Hahn Email jason-at-bioperl-dot-org Email matthew-dot-hahn-at-duke-dot-edu McDonald-Kreitman implementation based on work by Alisha Holloway at UC Davis. =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut # Let the code begin... package Bio::PopGen::Statistics; use strict; use constant { in_label => 'ingroup', out_label => 'outgroup', non_syn => 'non_synonymous', syn => 'synonymous', default_codon_table => 1, # Standard Codon table }; use Bio::MolEvol::CodonModel; use List::Util qw(sum); use base qw(Bio::Root::Root); our $codon_table => default_codon_table; our $has_twotailed => 0; BEGIN { eval { require Text::NSP::Measures::2D::Fisher2::twotailed }; if( $@ ) { $has_twotailed = 0; } else { $has_twotailed = 1; } } =head2 new Title : new Usage : my $obj = Bio::PopGen::Statistics->new(); Function: Builds a new Bio::PopGen::Statistics object Returns : an instance of Bio::PopGen::Statistics Args : none =cut =head2 fu_and_li_D Title : fu_and_li_D Usage : my $D = $statistics->fu_and_li_D(\@ingroup,\@outgroup); OR my $D = $statistics->fu_and_li_D(\@ingroup,$extmutations); Function: Fu and Li D statistic for a list of individuals given an outgroup and the number of external mutations (either provided or calculated from list of outgroup individuals) Returns : decimal Args : $individuals - array reference which contains ingroup individuals (L or derived classes) $extmutations - number of external mutations OR arrayref of outgroup individuals =cut sub fu_and_li_D { my ($self,$ingroup,$outgroup) = @_; my ($seg_sites,$n,$ancestral,$derived) = (0,0,0,0); if( ref($ingroup) =~ /ARRAY/i ) { $n = scalar @$ingroup; # pi - all pairwise differences $seg_sites = $self->segregating_sites_count($ingroup); } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI')) { $n = $ingroup->get_number_individuals; $seg_sites = $self->segregating_sites_count($ingroup); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D"); return 0; } if( $seg_sites <= 0 ) { $self->warn("mutation total was not > 0, cannot calculate a Fu and Li D"); return 0; } if( ! defined $outgroup ) { $self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations"); return 0; } elsif( ref($outgroup) ) { ($ancestral,$derived) = $self->derived_mutations($ingroup,$outgroup); $ancestral = 0 unless defined $ancestral; } else { $ancestral = $outgroup; } return $self->fu_and_li_D_counts($n,$seg_sites, $ancestral,$derived); } =head2 fu_and_li_D_counts Title : fu_li_D_counts Usage : my $D = $statistics->fu_and_li_D_counts($samps,$sites, $external); Function: Fu and Li D statistic for the raw counts of the number of samples, sites, external and internal mutations Returns : decimal number Args : number of samples (N) number of segregating sites (n) number of external mutations (n_e) =cut sub fu_and_li_D_counts { my ($self,$n,$seg_sites, $external_mut) = @_; my $a_n = 0; for(my $k= 1; $k < $n; $k++ ) { $a_n += ( 1 / $k ); } my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 ); } my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) / ( ( $n - 1) * ( $n - 2 ) ) ); my $v = 1 + ( ( $a_n**2 / ( $b + $a_n**2 ) ) * ( $c - ( ( $n + 1) / ( $n - 1) ) )); my $u = $a_n - 1 - $v; ($seg_sites - $a_n * $external_mut) / sqrt( ($u * $seg_sites) + ($v * $seg_sites*$seg_sites)); } =head2 fu_and_li_D_star Title : fu_and_li_D_star Usage : my $D = $statistics->fu_an_li_D_star(\@individuals); Function: Fu and Li's D* statistic for a set of samples Without an outgroup Returns : decimal number Args : array ref of L objects OR L object =cut #' # fu_and_li_D* sub fu_and_li_D_star { my ($self,$individuals) = @_; my ($seg_sites,$n,$singletons); if( ref($individuals) =~ /ARRAY/i ) { $n = scalar @$individuals; $seg_sites = $self->segregating_sites_count($individuals); $singletons = $self->singleton_count($individuals); } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI')) { my $pop = $individuals; $n = $pop->get_number_individuals; $seg_sites = $self->segregating_sites_count($pop); $singletons = $self->singleton_count($pop); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_D_star"); return 0; } return $self->fu_and_li_D_star_counts($n,$seg_sites, $singletons); } =head2 fu_and_li_D_star_counts Title : fu_li_D_star_counts Usage : my $D = $statistics->fu_and_li_D_star_counts($samps,$sites, $singletons); Function: Fu and Li D statistic for the raw counts of the number of samples, sites, external and internal mutations Returns : decimal number Args : number of samples (N) number of segregating sites (n) singletons (n_s) =cut sub fu_and_li_D_star_counts { my ($self,$n,$seg_sites, $singletons) = @_; my $a_n; for(my $k = 1; $k < $n; $k++ ) { $a_n += ( 1 / $k ); } my $a1 = $a_n + 1 / $n; my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 ); } my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) / ( ( $n - 1) * ( $n - 2 ) ) ); my $d = $c + ($n -2) / ($n - 1)**2 + 2 / ($n -1) * ( 1.5 - ( (2*$a1 - 3) / ($n -2) ) - 1 / $n ); my $v_star = ( ( ($n/($n-1) )**2)*$b + (($a_n**2)*$d) - (2*( ($n*$a_n*($a_n+1)) )/(($n-1)**2)) ) / (($a_n**2) + $b); my $u_star = ( ($n/($n-1))* ($a_n - ($n/ ($n-1)))) - $v_star; return (($n / ($n - 1)) * $seg_sites - $a_n * $singletons) / sqrt( ($u_star * $seg_sites) + ($v_star * $seg_sites*$seg_sites)); } =head2 fu_and_li_F Title : fu_and_li_F Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F(\@ingroup,$ext_muts); Function: Calculate Fu and Li's F on an ingroup with either the set of outgroup individuals, or the number of external mutations Returns : decimal number Args : array ref of L objects for the ingroup OR a L object number of external mutations OR list of individuals for the outgroup =cut #' sub fu_and_li_F { my ($self,$ingroup,$outgroup) = @_; my ($seg_sites,$pi,$n,$external,$internal); if( ref($ingroup) =~ /ARRAY/i ) { $n = scalar @$ingroup; # pi - all pairwise differences $pi = $self->pi($ingroup); $seg_sites = $self->segregating_sites_count($ingroup); } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI')) { $n = $ingroup->get_number_individuals; $pi = $self->pi($ingroup); $seg_sites = $self->segregating_sites_count($ingroup); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to Fu and Li's F"); return 0; } if( ! defined $outgroup ) { $self->warn("Need to provide either an array ref to the outgroup individuals or the number of external mutations"); return 0; } elsif( ref($outgroup) ) { ($external,$internal) = $self->derived_mutations($ingroup,$outgroup); } else { $external = $outgroup; } $self->fu_and_li_F_counts($n,$pi,$seg_sites,$external); } =head2 fu_and_li_F_counts Title : fu_li_F_counts Usage : my $F = $statistics->fu_and_li_F_counts($samps,$pi, $sites, $external); Function: Fu and Li F statistic for the raw counts of the number of samples, sites, external and internal mutations Returns : decimal number Args : number of samples (N) average pairwise differences (pi) number of segregating sites (n) external mutations (n_e) =cut sub fu_and_li_F_counts { my ($self,$n,$pi,$seg_sites, $external) = @_; my $a_n = 0; for(my $k= 1; $k < $n; $k++ ) { $a_n += ( 1 / $k ); } my $a1 = $a_n + (1 / $n ); my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += ( 1 / $k**2 ); } my $c = 2 * ( ( ( $n * $a_n ) - (2 * ( $n -1 ))) / ( ( $n - 1) * ( $n - 2 ) ) ); my $v_F = ( $c + ( (2*(($n**2)+$n+3)) / ( (9*$n)*($n-1) ) ) - (2/($n-1)) ) / ( ($a_n**2)+$b ); my $u_F = ( 1 + ( ($n+1)/(3*($n-1)) )- ( 4*( ($n+1)/(($n-1)**2) ))* ($a1 - ((2*$n)/($n+1))) ) / $a_n - $v_F; # warn("$v_F vf $u_F uf n = $n\n"); my $F = ($pi - $external) / ( sqrt( ($u_F*$seg_sites) + ($v_F*($seg_sites**2)) ) ); return $F; } =head2 fu_and_li_F_star Title : fu_and_li_F_star Usage : my $F = Bio::PopGen::Statistics->fu_and_li_F_star(\@ingroup); Function: Calculate Fu and Li's F* on an ingroup without an outgroup It uses count of singleton alleles instead Returns : decimal number Args : array ref of L objects for the ingroup OR L object =cut #' keep my emacs happy sub fu_and_li_F_star { my ($self,$individuals) = @_; my ($seg_sites,$pi,$n,$singletons); if( ref($individuals) =~ /ARRAY/i ) { $n = scalar @$individuals; # pi - all pairwise differences $pi = $self->pi($individuals); $seg_sites = $self->segregating_sites_count($individuals); $singletons = $self->singleton_count($individuals); } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI')) { my $pop = $individuals; $n = $pop->get_number_individuals; $pi = $self->pi($pop); $seg_sites = $self->segregating_sites_count($pop); $singletons = $self->singleton_count($pop); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to fu_and_li_F_star"); return 0; } return $self->fu_and_li_F_star_counts($n, $pi, $seg_sites, $singletons); } =head2 fu_and_li_F_star_counts Title : fu_li_F_star_counts Usage : my $F = $statistics->fu_and_li_F_star_counts($samps, $pi,$sites, $singletons); Function: Fu and Li F statistic for the raw counts of the number of samples, sites, external and internal mutations Returns : decimal number Args : number of samples (N) average pairwise differences (pi) number of segregating sites (n) singleton mutations (n_s) =cut sub fu_and_li_F_star_counts { my ($self,$n,$pi,$seg_sites, $singletons) = @_; if( $n <= 1 ) { $self->warn("N must be > 1\n"); return; } if( $n == 2) { return 0; } my $a_n = 0; my $b = 0; for(my $k= 1; $k < $n; $k++ ) { $b += (1 / ($k**2)); $a_n += ( 1 / $k ); # Eq (2) } my $a1 = $a_n + (1 / $n ); # warn("a_n is $a_n a1 is $a1 n is $n b is $b\n"); # From Simonsen et al (1995) instead of Fu and Li 1993 my $v_F_star = ( (( 2 * $n ** 3 + 110 * $n**2 - (255 * $n) + 153)/ (9 * ($n ** 2) * ( $n - 1))) + ((2 * ($n - 1) * $a_n ) / $n ** 2) - (8 * $b / $n) ) / ( ($a_n ** 2) + $b ); my $u_F_star = ((( (4* ($n**2)) + (19 * $n) + 3 - (12 * ($n + 1)* $a1)) / (3 * $n * ( $n - 1))) / $a_n) - $v_F_star; # warn("vf* = $v_F_star uf* = $u_F_star n = $n\n"); my $F_star = ( $pi - ($singletons*( ( $n-1) / $n)) ) / sqrt ( $u_F_star*$seg_sites + $v_F_star*$seg_sites**2); return $F_star; } =head2 tajima_D Title : tajima_D Usage : my $D = Bio::PopGen::Statistics->tajima_D(\@samples); Function: Calculate Tajima's D on a set of samples Returns : decimal number Args : array ref of L objects OR L object =cut #' sub tajima_D { my ($self,$individuals) = @_; my ($seg_sites,$pi,$n); if( ref($individuals) =~ /ARRAY/i ) { $n = scalar @$individuals; # pi - all pairwise differences $pi = $self->pi($individuals); $seg_sites = $self->segregating_sites_count($individuals); } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI')) { my $pop = $individuals; $n = $pop->get_number_individuals; $pi = $self->pi($pop); $seg_sites = $self->segregating_sites_count($pop); } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI OR a Bio::PopGen::PopulationI object to tajima_D"); return 0; } $self->tajima_D_counts($n,$seg_sites,$pi); } =head2 tajima_D_counts Title : tajima_D_counts Usage : my $D = $statistics->tajima_D_counts($samps,$sites,$pi); Function: Tajima's D statistic for the raw counts of the number of samples, sites, and avg pairwise distances (pi) Returns : decimal number Args : number of samples (N) number of segregating sites (n) average pairwise differences (pi) =cut #' sub tajima_D_counts { my ($self,$n,$seg_sites,$pi) = @_; my $a1 = 0; for(my $k= 1; $k < $n; $k++ ) { $a1 += ( 1 / $k ); } my $a2 = 0; for(my $k= 1; $k < $n; $k++ ) { $a2 += ( 1 / $k**2 ); } my $b1 = ( $n + 1 ) / ( 3* ( $n - 1) ); my $b2 = ( 2 * ( $n ** 2 + $n + 3) ) / ( ( 9 * $n) * ( $n - 1) ); my $c1 = $b1 - ( 1 / $a1 ); my $c2 = $b2 - ( ( $n + 2 ) / ( $a1 * $n))+( $a2 / $a1 ** 2); my $e1 = $c1 / $a1; my $e2 = $c2 / ( $a1**2 + $a2 ); my $denom = sqrt ( ($e1 * $seg_sites) + (( $e2 * $seg_sites) * ( $seg_sites - 1))); return if $denom == 0; my $D = ( $pi - ( $seg_sites / $a1 ) ) / $denom; return $D; } =head2 pi Title : pi Usage : my $pi = Bio::PopGen::Statistics->pi(\@inds) Function: Calculate pi (average number of pairwise differences) given a list of individuals which have the same number of markers (also called sites) as available from the get_Genotypes() call in L Returns : decimal number Args : Arg1= array ref of L objects which have markers/mutations. We expect all individuals to have a marker - we will deal with missing data as a special case. OR Arg1= L object. In the event that only allele frequency data is available, storing it in Population object will make this available. num sites [optional], an optional second argument (integer) which is the number of sites, then pi returned is pi/site. =cut sub pi { my ($self,$individuals,$numsites) = @_; my (%data,%marker_total,@marker_names,$n); if( ref($individuals) =~ /ARRAY/i ) { # one possible argument is an arrayref of Bio::PopGen::IndividualI objs @marker_names = $individuals->[0]->get_marker_names; $n = scalar @$individuals; # Here we are calculating the allele frequencies foreach my $ind ( @$individuals ) { if( ! $ind->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($ind)."\n"); return 0; } foreach my $m ( @marker_names ) { foreach my $allele (map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $data{$m}->{$allele}++; $marker_total{$m}++; } } } # while( my ($marker,$count) = each %marker_total ) { # foreach my $c ( values %{$data{$marker}} ) { # $c /= $count; # } # } # %data will contain allele frequencies for each marker, allele } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI') ) { my $pop = $individuals; $n = $pop->get_number_individuals; foreach my $marker( $pop->get_Markers ) { push @marker_names, $marker->name; #$data{$marker->name} = {$marker->get_Allele_Frequencies}; my @genotypes = $pop->get_Genotypes(-marker => $marker->name); for my $al ( map { $_->get_Alleles} @genotypes ) { $data{$marker->name}->{$al}++; $marker_total{$marker->name}++; } } } else { $self->throw("expected an array reference of a list of Bio::PopGen::IndividualI to pi"); } # based on Kevin Thornton's code: # http://molpopgen.org/software/libsequence/doc/html/PolySNP_8cc-source.html#l00152 # For now we assume that all individuals have the same markers my ($diffcount,$totalcompare) = (0,0); my $pi = 0; while ( my ($marker,$markerdat) = each %data ) { my $sampsize = $marker_total{$marker}; my $ssh = 0; my @alleles = keys %$markerdat; if ( $sampsize > 1 ) { my $denom = $sampsize * ($sampsize - 1.0); foreach my $al ( @alleles ) { $ssh += ($markerdat->{$al} * ($markerdat->{$al} - 1)) / $denom; } $pi += 1.0 - $ssh; } } $self->debug( "pi=$pi\n"); if( $numsites ) { return $pi / $numsites; } else { return $pi; } } =head2 theta Title : theta Usage : my $theta = Bio::PopGen::Statistics->theta($sampsize,$segsites); Function: Calculates Watterson's theta from the sample size and the number of segregating sites. Providing the third parameter, total number of sites will return theta per site. This is also known as K-hat = K / a_n Returns : decimal number Args : sample size (integer), num segregating sites (integer) total sites (integer) [optional] (to calculate theta per site) OR provide an arrayref of the L objects total sites (integer) [optional] (to calculate theta per site) OR provide an L object total sites (integer)[optional] =cut #' sub theta { my $self = shift; my ( $n, $seg_sites,$totalsites) = @_; if( ref($n) =~ /ARRAY/i ) { my $samps = $n; $totalsites = $seg_sites; # only 2 arguments if one is an array my %data; my @marker_names = $samps->[0]->get_marker_names; # we need to calculate number of polymorphic sites $seg_sites = $self->segregating_sites_count($samps); $n = scalar @$samps; } elsif(ref($n) && $n->isa('Bio::PopGen::PopulationI') ) { # This will handle the case when we pass in a PopulationI object my $pop = $n; $totalsites = $seg_sites; # shift the arguments over by one $n = $pop->haploid_population->get_number_individuals; $seg_sites = $self->segregating_sites_count($pop); } my $a1 = 0; for(my $k= 1; $k < $n; $k++ ) { $a1 += ( 1 / $k ); } if( $totalsites ) { # 0 and undef are the same can't divide by them $seg_sites /= $totalsites; } if( $a1 == 0 ) { return 0; } return $seg_sites / $a1; } =head2 singleton_count Title : singleton_count Usage : my ($singletons) = Bio::PopGen::Statistics->singleton_count(\@inds) Function: Calculate the number of mutations/alleles which only occur once in a list of individuals for all sites/markers Returns : (integer) number of alleles which only occur once (integer) Args : arrayref of L objects OR L object =cut sub singleton_count { my ($self,$individuals) = @_; my @inds; if( ref($individuals) =~ /ARRAY/ ) { @inds = @$individuals; } elsif( ref($individuals) && $individuals->isa('Bio::PopGen::PopulationI') ) { my $pop = $individuals; @inds = $pop->get_Individuals(); unless( @inds ) { $self->warn("Need to provide a population which has individuals loaded, not just a population with allele frequencies"); return 0; } } else { $self->warn("Expected either a PopulationI object or an arrayref of IndividualI objects"); return 0; } # find number of sites where a particular allele is only seen once my ($singleton_allele_ct,%sites) = (0); # first collect all the alleles into a hash structure foreach my $n ( @inds ) { if( ! $n->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n"); return 0; } foreach my $g ( $n->get_Genotypes ) { my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles); foreach my $allele (@alleles ) { $sites{$nm}->{$allele}++; } } } foreach my $site ( values %sites ) { # don't really care what the name is foreach my $allelect ( values %$site ) { # # find the sites which have an allele with only 1 copy $singleton_allele_ct++ if( $allelect == 1 ); } } return $singleton_allele_ct; } # Yes I know that singleton_count and segregating_sites_count are # basically processing the same data so calling them both is # redundant, something I want to fix later but want to make things # correct and simple first =head2 segregating_sites_count Title : segregating_sites_count Usage : my $segsites = Bio::PopGen::Statistics->segregating_sites_count Function: Gets the number of segregating sites (number of polymorphic sites) Returns : (integer) number of segregating sites Args : arrayref of L objects OR L object =cut # perhaps we'll change this in the future # to return the actual segregating sites # so one can use this to pull in the names of those sites. # Would be trivial if it is useful. sub segregating_sites_count { my ($self,$individuals) = @_; my $type = ref($individuals); my $seg_sites = 0; if( $type =~ /ARRAY/i ) { my %sites; foreach my $n ( @$individuals ) { if( ! $n->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects, this is a ".ref($n)."\n"); return 0; } foreach my $g ( $n->get_Genotypes ) { my ($nm,@alleles) = ($g->marker_name, $g->get_Alleles); foreach my $allele (@alleles ) { $sites{$nm}->{$allele}++; } } } foreach my $site ( values %sites ) { # use values b/c we don't # really care what the name is # find the sites which >1 allele $seg_sites++ if( keys %$site > 1 ); } } elsif( $type && $individuals->isa('Bio::PopGen::PopulationI') ) { foreach my $marker ( $individuals->haploid_population->get_Markers ) { my @alleles = $marker->get_Alleles; $seg_sites++ if ( scalar @alleles > 1 ); } } else { $self->warn("segregating_sites_count expects either a PopulationI object or a list of IndividualI objects"); return 0; } return $seg_sites; } =head2 heterozygosity Title : heterozygosity Usage : my $het = Bio::PopGen::Statistics->heterozygosity($sampsize,$freq1); Function: Calculate the heterozgosity for a sample set for a set of alleles Returns : decimal number Args : sample size (integer) frequency of one allele (fraction - must be less than 1) [optional] frequency of another allele - this is only needed in a non-binary allele system Note : p^2 + 2pq + q^2 =cut sub heterozygosity { my ($self,$samp_size, $freq1,$freq2) = @_; if( ! $freq2 ) { $freq2 = 1 - $freq1 } if( $freq1 > 1 || $freq2 > 1 ) { $self->warn("heterozygosity expects frequencies to be less than 1"); } my $sum = ($freq1**2) + (($freq2)**2); my $h = ( $samp_size*(1- $sum) ) / ($samp_size - 1) ; return $h; } =head2 derived_mutations Title : derived_mutations Usage : my $ext = Bio::PopGen::Statistics->derived_mutations($ingroup,$outgroup); Function: Calculate the number of alleles or (mutations) which are ancestral and the number which are derived (occurred only on the tips) Returns : array of 2 items - number of external and internal derived mutation Args : ingroup - Ls arrayref OR L outgroup- Ls arrayref OR L OR a single L =cut sub derived_mutations { my ($self,$ingroup,$outgroup) = @_; my (%indata,%outdata,@marker_names); # basically we have to do some type checking # if that perl were typed... my ($itype,$otype) = (ref($ingroup),ref($outgroup)); return $outgroup unless( $otype ); # we expect arrayrefs or objects, nums # are already the value we # are searching for # pick apart the ingroup # get the data if( ref($ingroup) =~ /ARRAY/i ) { if( ! ref($ingroup->[0]) || ! $ingroup->[0]->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for ingroup in external_mutations"); return 0; } # we assume that all individuals have the same markers # i.e. that they are aligned @marker_names = $ingroup->[0]->get_marker_names; for my $ind ( @$ingroup ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles } $ind->get_Genotypes($m) ) { $indata{$m}->{$allele}++; } } } } elsif( ref($ingroup) && $ingroup->isa('Bio::PopGen::PopulationI') ) { @marker_names = $ingroup->get_marker_names; for my $ind ( $ingroup->haploid_population->get_Individuals() ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $indata{$m}->{$allele}++; } } } } else { $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for ingroup in external_mutations"); return 0; } if( $otype =~ /ARRAY/i ) { if( ! ref($outgroup->[0]) || ! $outgroup->[0]->isa('Bio::PopGen::IndividualI') ) { $self->warn("Expected an arrayref of Bio::PopGen::IndividualI objects or a Population for outgroup in external_mutations"); return 0; } for my $ind ( @$outgroup ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles } $ind->get_Genotypes($m) ) { $outdata{$m}->{$allele}++; } } } } elsif( $otype->isa('Bio::PopGen::PopulationI') ) { for my $ind ( $outgroup->haploid_population->get_Individuals() ) { for my $m ( @marker_names ) { for my $allele ( map { $_->get_Alleles} $ind->get_Genotypes($m) ) { $outdata{$m}->{$allele}++; } } } } else { $self->warn("Need an arrayref of Bio::PopGen::IndividualI objs or a Bio::PopGen::Population for outgroup in external_mutations"); return 0; } # derived mutations are defined as # # ingroup (G A T) # outgroup (A) # derived mutations are G and T, A is the external mutation # ingroup (A T) # outgroup (C) # derived mutations A,T no external/ancestral mutations # ingroup (G A T) # outgroup (A T) # cannot determine my ($internal,$external); foreach my $marker ( @marker_names ) { my @outalleles = keys %{$outdata{$marker}}; my @in_alleles = keys %{$indata{$marker}}; next if( @outalleles > 1 || @in_alleles == 1); for my $allele ( @in_alleles ) { if( ! exists $outdata{$marker}->{$allele} ) { if( $indata{$marker}->{$allele} == 1 ) { $external++; } else { $internal++; } } } } return ($external, $internal); } =head2 composite_LD Title : composite_LD Usage : %matrix = Bio::PopGen::Statistics->composite_LD($population); Function: Calculate the Linkage Disequilibrium This is for calculating LD for unphased data. Other methods will be appropriate for phased haplotype data. Returns : Hash of Hashes - first key is site 1,second key is site 2 and value is LD for those two sites. my $LDarrayref = $matrix{$site1}->{$site2}; my ($ldval, $chisquared) = @$LDarrayref; Args : L or arrayref of Ls Reference: Weir B.S. (1996) "Genetic Data Analysis II", Sinauer, Sunderlanm MA. =cut sub composite_LD { my ($self,$pop) = @_; if( ref($pop) =~ /ARRAY/i ) { if( ref($pop->[0]) && $pop->[0]->isa('Bio::PopGen::IndividualI') ) { $pop = Bio::PopGen::Population->new(-individuals => @$pop); } else { $self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects"); return (); } } elsif( ! ref($pop) || ! $pop->isa('Bio::PopGen::PopulationI') ) { $self->warn("composite_LD expects a Bio::PopGen::PopulationI or an arrayref of Bio::PopGen::IndividualI objects"); return (); } my @marker_names = $pop->get_marker_names; my @inds = $pop->get_Individuals; my $num_inds = scalar @inds; my (%lookup); # calculate allele frequencies for each marker from the population # use the built-in get_Marker to get the allele freqs # we still need to calculate the genotype frequencies foreach my $marker_name ( @marker_names ) { my(%allelef); foreach my $ind ( @inds ) { my ($genotype) = $ind->get_Genotypes(-marker => $marker_name); if( ! defined $genotype ) { $self->warn("no genotype for marker $marker_name for individual ". $ind->unique_id. "\n"); next; } my @alleles = sort $genotype->get_Alleles; next if( scalar @alleles != 2); my $genostr = join(',', @alleles); $allelef{$alleles[0]}++; $allelef{$alleles[1]}++; } # we should check for cases where there > 2 alleles or # only 1 allele and throw out those markers. my @alleles = sort keys %allelef; my $allele_count = scalar @alleles; # test if site is polymorphic if( $allele_count != 2) { # only really warn if we're seeing multi-allele $self->warn("Skipping $marker_name because it has $allele_count alleles (".join(',',@alleles)."), \ncomposite_LD will currently only work for biallelic markers") if $allele_count > 2; next; # skip this marker } # Need to do something here to detect alleles which aren't # a single character if( length($alleles[0]) != 1 || length($alleles[1]) != 1 ) { $self->warn("An individual has an allele which is not a single base, this is currently not supported in composite_LD - consider recoding the allele as a single character"); next; } # fix the call for allele 1 (A or B) and # allele 2 (a or b) in terms of how we'll do the # N square from Weir p.126 $self->debug( "$alleles[0] is 1, $alleles[1] is 2 for $marker_name\n"); $lookup{$marker_name}->{'1'} = $alleles[0]; $lookup{$marker_name}->{'2'} = $alleles[1]; } @marker_names = sort keys %lookup; my $site_count = scalar @marker_names; # where the final data will be stored my %stats_for_sites; # standard way of generating pairwise combos # LD is done by comparing all the pairwise site (marker) # combinations and keeping track of the genotype and # pairwise genotype (ie genotypes of the 2 sites) frequencies for( my $i = 0; $i < $site_count - 1; $i++ ) { my $site1 = $marker_names[$i]; for( my $j = $i+1; $j < $site_count ; $j++) { my (%genotypes, %total_genotype_count,$total_pairwisegeno_count, %pairwise_genotypes); my $site2 = $marker_names[$j]; my (%allele_count,%allele_freqs) = (0,0); foreach my $ind ( @inds ) { # build string of genotype at site 1 my ($genotype1) = $ind->get_Genotypes(-marker => $site1); my @alleles1 = sort $genotype1->get_Alleles; # if an individual has only one available allele # (has a blank or N for one of the chromosomes) # we don't want to use it in our calculation next unless( scalar @alleles1 == 2); my $genostr1 = join(',', @alleles1); # build string of genotype at site 2 my ($genotype2) = $ind->get_Genotypes(-marker => $site2); my @alleles2 = sort $genotype2->get_Alleles; my $genostr2 = join(',', @alleles2); next unless( scalar @alleles2 == 2); for (@alleles1) { $allele_count{$site1}++; $allele_freqs{$site1}->{$_}++; } $genotypes{$site1}->{$genostr1}++; $total_genotype_count{$site1}++; for (@alleles2) { $allele_count{$site2}++; $allele_freqs{$site2}->{$_}++; } $genotypes{$site2}->{$genostr2}++; $total_genotype_count{$site2}++; # We are using the $site1,$site2 to signify # a unique key $pairwise_genotypes{"$genostr1,$genostr2"}++; # some individuals $total_pairwisegeno_count++; } for my $site ( %allele_freqs ) { for my $al ( keys %{ $allele_freqs{$site} } ) { $allele_freqs{$site}->{$al} /= $allele_count{$site}; } } my $n = $total_pairwisegeno_count; # number of pairs of comparisons # 'A' and 'B' are two loci or in our case site1 and site2 my $allele1_site1 = $lookup{$site1}->{'1'}; # this is the BigA allele my $allele1_site2 = $lookup{$site2}->{'1'}; # this is the BigB allele my $allele2_site1 = $lookup{$site1}->{'2'}; # this is the LittleA allele my $allele2_site2 = $lookup{$site2}->{'2'}; # this is the LittleB allele # AABB my $N1genostr = join(",",( $allele1_site1, $allele1_site1, $allele1_site2, $allele1_site2)); $self->debug(" [$site1,$site2](AABB) N1genostr=$N1genostr\n"); # AABb my $N2genostr = join(",",( $allele1_site1, $allele1_site1, $allele1_site2, $allele2_site2)); $self->debug(" [$site1,$site2](AABb) N2genostr=$N2genostr\n"); # AaBB my $N4genostr = join(",",( $allele1_site1, $allele2_site1, $allele1_site2, $allele1_site2)); $self->debug(" [$site1,$site2](AaBB) N4genostr=$N4genostr\n"); # AaBb my $N5genostr = join(",",( $allele1_site1, $allele2_site1, $allele1_site2, $allele2_site2)); $self->debug(" [$site1,$site2](AaBb) N5genostr=$N5genostr\n"); # count of AABB in my $n1 = $pairwise_genotypes{$N1genostr} || 0; # count of AABb in my $n2 = $pairwise_genotypes{$N2genostr} || 0; # count of AaBB in my $n4 = $pairwise_genotypes{$N4genostr} || 0; # count of AaBb in my $n5 = $pairwise_genotypes{$N5genostr} || 0; my $homozA_site1 = join(",", ($allele1_site1,$allele1_site1)); my $homozB_site2 = join(",", ($allele1_site2,$allele1_site2)); my $p_AA = ($genotypes{$site1}->{$homozA_site1} || 0) / $n; my $p_BB = ($genotypes{$site2}->{$homozB_site2} || 0) / $n; my $p_A = $allele_freqs{$site1}->{$allele1_site1} || 0; # an individual allele freq my $p_a = 1 - $p_A; my $p_B = $allele_freqs{$site2}->{$allele1_site2} || 0; # an individual allele freq my $p_b = 1 - $p_B; # variance of allele frequencies my $pi_A = $p_A * $p_a; my $pi_B = $p_B * $p_b; # hardy weinberg my $D_A = $p_AA - $p_A**2; my $D_B = $p_BB - $p_B**2; my $n_AB = 2*$n1 + $n2 + $n4 + 0.5 * $n5; $self->debug("n_AB=$n_AB -- n1=$n1, n2=$n2 n4=$n4 n5=$n5\n"); my $delta_AB = (1 / $n ) * ( $n_AB ) - ( 2 * $p_A * $p_B ); $self->debug("delta_AB=$delta_AB -- n=$n, n_AB=$n_AB p_A=$p_A, p_B=$p_B\n"); $self->debug(sprintf(" (%d * %.4f) / ( %.2f + %.2f) * ( %.2f + %.2f) \n", $n,$delta_AB**2, $pi_A, $D_A, $pi_B, $D_B)); my $chisquared; eval { $chisquared = ( $n * ($delta_AB**2) ) / ( ( $pi_A + $D_A) * ( $pi_B + $D_B) ); }; if( $@ ) { $self->debug("Skipping the site because the denom is 0.\nsite1=$site1, site2=$site2 : pi_A=$pi_A, pi_B=$pi_B D_A=$D_A, D_B=$D_B\n"); next; } # this will be an upper triangular matrix $stats_for_sites{$site1}->{$site2} = [$delta_AB,$chisquared]; } } return %stats_for_sites; } =head2 mcdonald_kreitman Title : mcdonald_kreitman Usage : $Fstat = mcdonald_kreitman($ingroup, $outgroup); Function: Calculates McDonald-Kreitman statistic based on a set of ingroup individuals and an outgroup by computing the number of differences at synonymous and non-synonymous sites for intraspecific comparisons and with the outgroup Returns : 2x2 table, followed by a hash reference indicating any warning messages about the status of the alleles or codons Args : -ingroup => L object or arrayref of Ls -outgroup => L object or arrayef of Ls -polarized => Boolean, to indicate if this should be a polarized test. Must provide two individuals as outgroups. =cut sub mcdonald_kreitman { my ($self,@args) = @_; my ($ingroup, $outgroup,$polarized) = $self->_rearrange([qw(INGROUP OUTGROUP POLARIZED)],@args); my $verbose = $self->verbose; my $outgroup_count; my $gapchar = '\-'; if( ref($outgroup) =~ /ARRAY/i ) { $outgroup_count = scalar @$outgroup; } elsif( UNIVERSAL::isa($outgroup,'Bio::PopGen::PopulationI') ) { $outgroup_count = $outgroup->get_number_individuals; } else { $self->throw("Expected an ArrayRef of Individuals OR a Bio::PopGen::PopulationI"); } if( $polarized ) { if( $outgroup_count < 2 ) { $self->throw("Need 2 outgroups with polarized option\n"); } } elsif( $outgroup_count > 1 ) { $self->warn(sprintf("%s outgroup sequences provided, but only first will be used",$outgroup_count )); } elsif( $outgroup_count == 0 ) { $self->throw("No outgroup sequence provided"); } my $codon_path = Bio::MolEvol::CodonModel->codon_path; my (%marker_names,%unique,@inds); for my $p ( $ingroup, $outgroup) { if( ref($p) =~ /ARRAY/i ) { push @inds, @$p; } else { push @inds, $p->get_Individuals; } } for my $i ( @inds ) { if( $unique{$i->unique_id}++ ) { $self->warn("Individual ". $i->unique_id. " is seen more than once in the ingroup or outgroup set\n"); } for my $n ( $i->get_marker_names ) { $marker_names{$n}++; } } my @marker_names = keys %marker_names; if( $marker_names[0] =~ /^(Site|Codon)/ ) { # sort by site or codon number and do it in # a schwartzian transformation baby! @marker_names = map { $_->[1] } sort { $a->[0] <=> $b->[0] } map { [$_ =~ /^(?:Codon|Site)-(\d+)/, $_] } @marker_names; } my $num_inds = scalar @inds; my %vals = ( 'ingroup' => $ingroup, 'outgroup' => $outgroup, ); # Make the Codon Table type a parameter! my $table = Bio::Tools::CodonTable->new(-id => $codon_table); my @vt = qw(outgroup ingroup); my %changes; my %status; my %two_by_two = ( 'fixed_N' => 0, 'fixed_S' => 0, 'poly_N' => 0, 'poly_S' => 0); for my $codon ( @marker_names ) { my (%codonvals); my %all_alleles; for my $t ( @vt ) { my $outcount = 1; for my $ind ( @{$vals{$t}} ) { my @alleles = $ind->get_Genotypes($codon)->get_Alleles; if( @alleles > 1 ) { die; # warn("$codon $codon saw ", scalar @alleles, " for ind ", $ind->unique_id, "\n"); } else { my ($allele) = shift @alleles; $all_alleles{$ind->unique_id} = $allele; my $AA = $table->translate($allele); next if( $AA eq 'X' || $AA eq '*' || $allele =~ /N/i); my $label = $t; if( $t eq 'outgroup' ) { $label = $t.$outcount++; } $codonvals{$label}->{$allele}++; $codonvals{all}->{$allele}++; } } } my $total = sum ( values %{$codonvals{'ingroup'}} ); next if( $total && $total < 2 ); # skip sites with < alleles # process all the seen alleles (codons) # this is a vertical slide through the alignment if( keys %{$codonvals{all}} <= 1 ) { # no changes or no VALID codons - monomorphic } else { # grab only the first outgroup codon (what to do with rest?) my ($outcodon) = keys %{$codonvals{'outgroup1'}}; if( ! $outcodon ) { $status{"no outgroup codon $codon"}++; next; } my $out_AA = $table->translate($outcodon); my ($outcodon2) = keys %{$codonvals{'outgroup2'}}; if( ($polarized && ($outcodon ne $outcodon2)) || $out_AA eq 'X' || $out_AA eq '*' ) { # skip if outgroup codons are different # (when polarized option is on) # or skip if the outcodon is STOP or 'NNN' if( $verbose > 0 ) { $self->debug("skipping $out_AA and $outcodon $outcodon2\n"); } $status{'outgroup codons different'}++; next; } # check if ingroup is actually different from outgroup - # if there are the same number of alleles when considering # ALL or just the ingroup, then there is nothing new seen # in the outgroup so it must be a shared allele (codon) # so we just count how many total alleles were seen # if this is the same as the number of alleles seen for just # the ingroup then the outgroup presents no new information my @ingroup_codons = keys %{$codonvals{'ingroup'}}; my $diff_from_out = ! exists $codonvals{'ingroup'}->{$outcodon}; if( $verbose > 0 ) { $self->debug("alleles are in: ", join(",", @ingroup_codons), " out: ", join(",", keys %{$codonvals{outgroup1}}), " diff_from_out=$diff_from_out\n"); for my $ind ( sort keys %all_alleles ) { $self->debug( "$ind\t$all_alleles{$ind}\n"); } } # are all the ingroup alleles the same and diferent from outgroup? # fixed differences between species if( $diff_from_out ) { if( scalar @ingroup_codons == 1 ) { # fixed differences if( $outcodon =~ /^$gapchar/ ) { $status{'outgroup codons with gaps'}++; next; } elsif( $ingroup_codons[0] =~ /$gapchar/) { $status{'ingroup codons with gaps'}++; next; } my $path = $codon_path->{uc $ingroup_codons[0].$outcodon}; $two_by_two{fixed_N} += $path->[0]; $two_by_two{fixed_S} += $path->[1]; if( $verbose > 0 ) { $self->debug("ingroup is @ingroup_codons outcodon is $outcodon\n"); $self->debug("path is ",join(",",@$path),"\n"); $self->debug (sprintf("%-15s fixeddiff - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,$ingroup_codons[0], $outcodon,$out_AA, @$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } else { # polymorphic and all are different from outgroup # Here we find the minimum number of NS subst my ($Ndiff,$Sdiff) = (3,0); # most different path for my $c ( @ingroup_codons ) { next if( $c =~ /$gapchar/ || $outcodon =~ /$gapchar/); my $path = $codon_path->{uc $c.$outcodon}; my ($tNdiff,$tSdiff) = @$path; if( $path->[0] < $Ndiff || ($tNdiff == $Ndiff && $tSdiff <= $Sdiff)) { ($Ndiff,$Sdiff) = ($tNdiff,$tSdiff); } } $two_by_two{fixed_N} += $Ndiff; $two_by_two{fixed_S} += $Sdiff; if( @ingroup_codons > 2 ) { $status{"more than 2 ingroup codons $codon"}++; warn("more than 2 ingroup codons (@ingroup_codons)\n"); } else { my $path = $codon_path->{uc join('',@ingroup_codons)}; $two_by_two{poly_N} += $path->[0]; $two_by_two{poly_S} += $path->[1]; if( $verbose > 0 ) { $self->debug(sprintf("%-15s polysite_all - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA,@$path, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } } } else { my %unq = map { $_ => 1 } @ingroup_codons; delete $unq{$outcodon}; my @unique_codons = keys %unq; # calc path for diff add to poly # Here we find the minimum number of subst bw # codons my ($Ndiff,$Sdiff) = (3,0); # most different path for my $c ( @unique_codons ) { my $path = $codon_path->{uc $c.$outcodon }; if( ! defined $path ) { die " cannot get path for ", $c.$outcodon, "\n"; } my ($tNdiff,$tSdiff) = @$path; if( $path->[0] < $Ndiff || ($tNdiff == $Ndiff && $tSdiff <= $Sdiff)) { ($Ndiff,$Sdiff) = ($tNdiff,$tSdiff); } } if( @unique_codons == 2 ) { my $path = $codon_path->{uc join('',@unique_codons)}; if( ! defined $path ) { $self->throw("no path for @unique_codons\n"); } $Ndiff += $path->[0]; $Sdiff += $path->[1]; } $two_by_two{poly_N} += $Ndiff; $two_by_two{poly_S} += $Sdiff; if( $verbose > 0 ) { $self->debug(sprintf("%-15s polysite - %s;%s(%s) %d,%d\tNfix=%d Sfix=%d Npoly=%d Spoly=%s\n",$codon,join(',',@ingroup_codons), $outcodon,$out_AA, $Ndiff, $Sdiff, map { $two_by_two{$_} } qw(fixed_N fixed_S poly_N poly_S))); } } } } return ( $two_by_two{'poly_N'}, $two_by_two{'fixed_N'}, $two_by_two{'poly_S'}, $two_by_two{'fixed_S'}, {%status}); } *MK = \&mcdonald_kreitman; =head2 mcdonald_kreitman_counts Title : mcdonald_kreitman_counts Usage : my $MK = $statistics->mcdonald_kreitman_counts( N_poly -> integer of count of non-syn polymorphism N_fix -> integer of count of non-syn fixed substitutions S_poly -> integer of count of syn polymorphism S_fix -> integer of count of syn fixed substitutions ); Function: Returns : decimal number Args : =cut sub mcdonald_kreitman_counts { my ($self,$Npoly,$Nfix,$Spoly,$Sfix) = @_; if( $has_twotailed ) { return &Text::NSP::Measures::2D::Fisher2::twotailed::calculateStatistic (n11=>$Npoly, n1p=>$Npoly+$Spoly, np1=>$Npoly+$Nfix, npp=>$Npoly+$Nfix+$Spoly+$Sfix); } else { $self->warn("cannot call mcdonald_kreitman_counts because no Fisher's exact is available - install Text::NSP::Measures::2D::Fisher2::twotailed"); return 0; } } 1;