# $Id: Sopma.pm,v 1.0 2003/07/ 11 # # BioPerl module for Bio::Tools::Analysis::Protein::Sopma # # Copyright Richard Adams # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tools::Analysis::Protein::Sopma - a wrapper around the Sopma protein secondary structure prediction server =head1 SYNOPSIS use Bio::Tools::Analysis::Protein::Sopma; #get a Bio::Seq or Bio::PrimarySeq my $seq; my $sopma = Bio::Tools::Analysis::Protein::Sopma->new (-seq=>$seq, states=>4); $sopma->run; print $sopma->result;# #raw text to standard error =head1 DESCRIPTION A module to remotely retrieve predictions of protein secondary structure. Each residue in the protein receives a score representing the likelihood of existing in each of four different states (helix, coil, turn or sheet), e.g., my $analysis_object = Bio::Tools::SimpleAnalysis::Protein::Sopma->new ( -seq => $seq, -states => 4, -window_width => 15, ); creates a new object. Compulsory argument -seq. Optional arguments -states, -window_width,-similarity_threshold. These arguments can also be set by direct methods , e.g., $analysis_object->states(4); $analysis_object->run; submits the query to the server and obtains raw text output. Given an amino acid sequence the results can be obtained in 4 formats, determined by the argument to the result method: =over 4 =item 1 The raw text of the program output. my $rawdata = $analysis_object->result; =item 2 A reference to an array of hashes of scores for each state and the assigned state. my $data_ref = $analysis_object->result('parsed'); print "score for helix at residue 2 is $data_ref->[1]{'helix'}\n"; print "predicted struc at residue 2 is $data_ref->[1]{'struc}\n"; Hash keys are 'helix', 'struc', 'sheet', 'coil', 'turn'. =item 3 An array of Bio::SeqFeature::Generic objects where each feature is a predicted unit of secondary structure. Only stretches of helix/sheet predictions for longer than 4 residues are defined as helices/sheets. my @fts = $analysis_object->result(Bio::SeqFeatureI); for my $ft (@fts) { print " From ", $ft->start, " to ",$ft->end, " struc: " , ($ft->each_tag_value('type'))[0] ,"\n"; } =item 4 A Bio::Seq::Meta::Array implementing sequence. This is a Bio::Seq object that can also hold data about each residue in the sequence. In this case, the sequence can be associated with a arrays of Sopma prediction scores. e.g., my $meta_sequence = $analysis_object->result('meta'); print "scores from residues 10 -20 are ", $meta_sequence->named_submeta_text("Sopma_helix",10,20), "\n"; Meta sequence names are : Sopma_helix, Sopma_sheet, Sopma_turn, Sopma_coil, Sopma_struc, representing the scores for each residue. Many methods common to all analyses are inherited from Bio::Tools::Analysis::SimpleAnalysisBase. =back =head1 SEE ALSO L, L L, L =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to one of the Bioperl mailing lists. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHORS Richard Adams, Richard.Adams@ed.ac.uk, =head1 APPENDIX =cut use strict; package Bio::Tools::Analysis::Protein::Sopma; use IO::String; use Bio::SeqIO; use HTTP::Request::Common qw (POST); use Bio::SeqFeature::Generic; use Bio::Seq::Meta::Array; use base qw(Bio::Tools::Analysis::SimpleAnalysisBase); #extends array for 2struc. my $URL = 'http://npsa-pbil.ibcp.fr/cgi-bin/secpred_sopma.pl'; my $ANALYSIS_NAME= 'Sopma'; my $ANALYSIS_SPEC= {name => 'Sopma', type => 'Protein'}; my $INPUT_SPEC = [ {mandatory=>'true', type => 'Bio::PrimarySeqI', 'name' => 'seq', }, {mandatory =>'false', type => 'integer', name => 'similarity_threshold', default => 8, }, {mandatory =>'false', type => 'integer', name => 'window_width', default => 17, }, {mandatory =>'false', type => 'integer', name => 'states', default => 4, }, ]; my $RESULT_SPEC = { '' => 'bulk', # same as undef raw => '[{struc=>, helix=>, turn=>, coil=>, sheet=>}]', meta => 'Bio::Seq::Meta::Array object', 'Bio::SeqFeatureI' => 'ARRAY of Bio::SeqFeature::Generic', }; use constant MIN_STRUC_LEN => 3; =head2 similarity_threshold Useage : $job->similarity_threshold(...) Returns : The similarity threshold used in the analysis Args : None (retrieves value) or an integer (default = 8) that sets the similarity threshold . This method gets/sets the similarity threshold for the prediction. =cut sub similarity_threshold { my ($self, $value) = @_; if ($value) { $self->throw ("similarity_threshold must be integer") unless $value =~ /^\d+$/; $self->{'_similarity_threshold'} = $value; } $self->{'_similarity_threshold'} ||= $self->input_spec->[1]{'default'}; return $self->{'_similarity_threshold'}; } =head2 window_width Usage : $job->window_width(...) Returns : The window width used in the analysis Args : None (retrieves value) or an integer (default = 17) that sets the window width. This method gets/sets the window width for the prediction, . If attempted to set longer than the sequence, warns of error. =cut sub window_width { my ($self, $value) = @_; if ($value) { $self->throw ("window_width must be integer") unless $value =~ /^\d+$/; $self->{'_window_width'} = $value; } $self->{'_window_width'} ||= $self->input_spec->[2]{'default'}; $self->warn ("window width longer than sequence!") unless $self->{'_window_width'} < $self->seq->length; return $self->{'_window_width'}; } =head2 states Usage : $job->states(...) Returns : The number of secondary structure prediction states Args : None (retrieves value) or either '3' or '4' to set prior to running analysis. This method gets/sets the number of states for the prediction, either 3 or 4 (includes turns). =cut sub states { my ($self, $value) = @_; if ($value) { $self->throw ("number of states must be 3 or 4") unless $value == 3 or $value ==4; $self->{'_states'} = $value; } $self->{'_states'} ||= $self->input_spec->[3]{'default'}; return $self->{'_states'}; } =head2 result Usage : $job->result (...) Returns : a result created by running an analysis Args : various The method returns a result of an executed job. If the job was terminated by an error the result may contain an error message instead of the real data. This implementation returns differently processed data depending on argument: =over 3 =item undef Returns the raw ASCII data stream but without HTML tags =item 'Bio::SeqFeatureI' The argument string defines the type of bioperl objects returned in an array. The objects are L. Feature primary tag is "2ary". Feature tags are "type" (which can be helix, sheet coil, or turn if 4 state prediction requested) "method" (Sopma) =item 'parsed' Array of hash references of scores/structure assignations { helix =E , sheet =E , coil =E , struc=E}. =item 'all' A Bio::Seq::Meta::Array object. Scores can be accessed using methods from this class. Meta sequence names are Sopma_helix, Sopma_sheet, Sopma_coil, Sopma_turn (if defined), and Sopma_struc. =back =cut sub result { my ($self,$value, $run_id) = @_; my @score; my @fts; if ($value ) { if (!exists($self->{'_parsed'} )) { my $result = IO::String->new($self->{'_result'}); while (my $line = <$result>) { next unless $line =~ /^[HCET]\s/; # or for sopma/hnn /^[A-Z]\s/ $line =~/^([A-Z])\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/; # or for so push @score, { struc => $1, helix => $2, sheet => $3, coil => $5, }; #include turn if 4states are requested $score[$#score]{'turn'} = $4 if $self->states == 4; #can optimize by duplicating code here } $self->{'_parsed'} = \@score; } if ($value eq 'Bio::SeqFeatureI') { $self->_get_2ary_coords(); for my $type (keys %{$self->{'_parsed_coords'}} ) { next if $type =~ /\w{2,}/; #if not H,C,E or T ## these 2 are added to distinguish features on same ## sequence run with different params my $tag_hash = { type => $type, method => $self->analysis_name, }; $self->_add_params_to_result($tag_hash); ## now make feature object for my $loc (@{$self->{'_parsed_coords'}{$type}} ) { push @fts, Bio::SeqFeature::Generic->new (-start => $loc->{'start'}, -end => $loc->{'end'}, -source => 'Sopma', -primary => 'Domain', -tag => $tag_hash, ); } #end of array of strucs of type } # end of all 2nd struc elements delete $self->{'_parsed_coords'}; #remove temp data return @fts; } #endif BioSeqFeature elsif ($value eq 'meta') { #1st of all make 3 or 4 arrays of scores for each type from column data my %type_scores; for my $aa (@{$self->{'_parsed'}}) { for my $type (qw(struc helix sheet coil)) { push @{$type_scores{$type}}, $aa->{$type}; } push @{$type_scores{'turn'}}, $aa->{'turn'} if exists $aa->{'turn'}; } ## convert to meta sequence array ## if (!$self->seq->isa("Bio::Seq::Meta::Array")) { bless ($self->seq, "Bio::Seq::Meta::Array"); } $self->seq->isa("Bio::Seq::MetaI") || $self->throw("$self is not a Bio::Seq::MetaI"); $Bio::Seq::Meta::Array::DEFAULT_NAME = 'Sopma_struc'; for my $struc_type (keys %type_scores) { my $meta_name = "Sopma". "_" . "$struc_type"; if ($run_id) { $meta_name .= "|$run_id"; } my @meta = map{$_->{$struc_type}} @{$self->{'_parsed'}}; if (grep{$_ eq $meta_name}$self->seq->meta_names >0) { $self->warn ("$meta_name already exists , not overwriting!"); next; } $self->seq->named_meta($meta_name,\@meta ); } # return seq array object implementing meta sequence # return $self->seq; } ## else return parsed data if $value is defined else { return $self->{'_parsed'}; } } #endif ($value) #return raw result if no return format stated return $self->{'_result'}; } sub _init { my $self = shift; $self->url($URL); $self->{'_ANALYSIS_SPEC'} = $ANALYSIS_SPEC; $self->{'_INPUT_SPEC'} = $INPUT_SPEC; $self->{'_RESULT_SPEC'} = $RESULT_SPEC; $self->{'_ANALYSIS_NAME'} = $ANALYSIS_NAME; return $self; } sub _get_2ary_coords { #helper sub for result; ##extracts runs of structure > MIN_STRUC_LENresidues or less if Turn: #i.e., helical prediction for 1 residue isn't very meaningful... ## and poulates array of hashes with start/end values. ##keys of $Result are 'H' 'T' 'C' 'E'. my ($self) = @_; my @prot = @{$self->{'_parsed'}}; my %Result; for (my $index = 0; $index <= $#prot; $index++) { my $type = $prot[$index]{'struc'}; next unless $type && $type =~ /[HTCE]/; my $length = 1; for (my $j = $index + 1; $j <= $#prot; $j++) { my $test = $prot[$j]; if ($test->{'struc'} eq $type) { $length++; } elsif ( $length > MIN_STRUC_LEN || ($length <= MIN_STRUC_LEN && $type eq 'T') ) { push @{$Result{$type}}, {start => $index + 1 , end => $j}; $index += $length -1; last; } else { $index += $length - 1; last; } } } $self->{'_parsed_coords'} = \%Result; #temp assignment } sub _run { my $self = shift; $self->delay(1); # delay repeated calls by default by 3 sec, set delay() to change $self->sleep; $self->status('TERMINATED_BY_ERROR'); my $request = POST 'http://npsa-pbil.ibcp.fr/cgi-bin/secpred_sopma.pl', Content_Type => 'form-data', Content => [title => "", notice => $self->seq->seq, ali_width => 70, states => $self->states, threshold => $self->similarity_threshold , width => $self->window_width, ]; my $text = $self->request($request)->content; return $self unless $text; #### get text only version of results ## my ($next) = $text =~ /Prediction.*?=(.*?)>/; my $out = "http://npsa-pbil.ibcp.fr/". "$next"; my $req2 = HTTP::Request->new(GET=>$out); my $resp2 = $self->request ($req2); $self->{'_result'} = $resp2->content; $self->status('COMPLETED') if $resp2 ne ''; return $self; } sub _add_params_to_result{ ## called when making Seqfeature objects my ($self, $tag_hash) = @_; my $hash; ## adds input parameter values to SeqFeatureI results where multiple ## parameter values are possible. Only adds value if not default. map{$hash->{$_->{'name'}} = $_}@{$self->input_spec()}; for my $p (keys %$hash) { if (!ref($self->$p) && $self->$p ne $hash->{$p}{'default'}) { $tag_hash->{$p} = $self->$p; } } } 1;