# $Id: PAML.pm 16123 2009-09-17 12:57:27Z cjfields $ # # BioPerl module for Bio::Tools::Phylo::PAML # # Please direct questions and support issues to # # Cared for by Jason Stajich # # Copyright Jason Stajich, Aaron J Mackey # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tools::Phylo::PAML - Parses output from the PAML programs codeml, baseml, basemlg, codemlsites and yn00 =head1 SYNOPSIS #!/usr/bin/perl -Tw use strict; use Bio::Tools::Phylo::PAML; # need to specify the output file name (or a fh) (defaults to # -file => "codeml.mlc"); also, optionally, the directory in which # the other result files (rst, 2ML.dS, etc) may be found (defaults # to "./") my $parser = Bio::Tools::Phylo::PAML->new (-file => "./results/mlc", -dir => "./results/"); # get the first/next result; a Bio::Tools::Phylo::PAML::Result object, # which isa Bio::SeqAnalysisResultI object. my $result = $parser->next_result(); # get the sequences used in the analysis; returns Bio::PrimarySeq # objects (OTU = Operational Taxonomic Unit). my @otus = $result->get_seqs(); # codon summary: codon usage of each sequence [ arrayref of { # hashref of counts for each codon } for each sequence and the # overall sum ], and positional nucleotide distribution [ arrayref # of { hashref of frequencies for each nucleotide } for each # sequence and overall frequencies ]: my ($codonusage, $ntdist) = $result->get_codon_summary(); # example manipulations of $codonusage and $ntdist: printf "There were %d %s codons in the first seq (%s)\n", $codonusage->[0]->{AAA}, 'AAA', $otus[0]->id(); printf "There were %d %s codons used in all the sequences\n", $codonusage->[$#{$codonusage}]->{AAA}, 'AAA'; printf "Nucleotide %c was present %g of the time in seq %s\n", 'A', $ntdist->[1]->{A}, $otus[1]->id(); # get Nei & Gojobori dN/dS matrix: my $NGmatrix = $result->get_NGmatrix(); # get ML-estimated dN/dS matrix, if calculated; this corresponds to # the runmode = -2, pairwise comparison usage of codeml my $MLmatrix = $result->get_MLmatrix(); # These matrices are length(@otu) x length(@otu) "strict lower # triangle" 2D-matrices, which means that the diagonal and # everything above it is undefined. Each of the defined cells is a # hashref of estimates for "dN", "dS", "omega" (dN/dS ratio), "t", # "S" and "N". If a ML matrix, "lnL" and "kappa" will also be defined. printf "The omega ratio for sequences %s vs %s was: %g\n", $otus[0]->id, $otus[1]->id, $MLmatrix->[0]->[1]->{omega}; # with a little work, these matrices could also be passed to # Bio::Tools::Run::Phylip::Neighbor, or other similar tree-building # method that accepts a matrix of "distances" (using the LOWTRI # option): my $distmat = [ map { [ map { $$_{omega} } @$_ ] } @$MLmatrix ]; # for runmode's other than -2, get tree topology with estimated # branch lengths; returns a Bio::Tree::TreeI-based tree object with # added PAML parameters at each node my ($tree) = $result->get_trees(); for my $node ($tree->get_nodes()) { # inspect the tree: the "t" (time) parameter is available via # $node->branch_length(); all other branch-specific parameters # ("omega", "dN", etc.) are available via # ($omega) = $node->get_tag_values('omega'); } # if you are using model based Codeml then trees are stored in each # modelresult object for my $modelresult ( $result->get_NSSite_results ) { # model M0, M1, etc print "model is ", $modelresult->model_num, "\n"; my ($tree) = $modelresult->get_trees(); for my $node ($tree->get_nodes()) { # inspect the tree: the "t" (time) parameter is available via # $node->branch_length(); all other branch-specific parameters # ("omega", "dN", etc.) are available via # ($omega) = $node->get_tag_values('omega'); } } # get any general model parameters: kappa (the # transition/transversion ratio), NSsites model parameters ("p0", # "p1", "w0", "w1", etc.), etc. my $params = $result->get_model_params(); printf "M1 params: p0 = %g\tp1 = %g\n", $params->{p0}, $params->{p1}; # parse AAML result files my $aamat = $result->get_AADistMatrix(); my $aaMLmat = $result->get_AAMLDistMatrix(); =head1 DESCRIPTION This module is used to parse the output from the PAML programs codeml, baseml, basemlg, codemlsites and yn00. You can use the Bio::Tools::Run::Phylo::PAML::* modules to actually run some of the PAML programs, but this module is only useful to parse the output. =head1 TO DO Implement get_posteriors(). For NSsites models, obtain arrayrefs of posterior probabilities for membership in each class for every position; probabilities correspond to classes w0, w1, ... etc. my @probs = $result->get_posteriors(); # find, say, positively selected sites! if ($params->{w2} > 1) { for (my $i = 0; $i < @probs ; $i++) { if ($probs[$i]->[2] > 0.5) { # assumes model M1: three w's, w0, w1 and w2 (positive selection) printf "position %d: (%g prob, %g omega, %g mean w)\n", $i, $probs[$i]->[2], $params->{w2}, $probs[$i]->[3]; } } } else { print "No positive selection found!\n"; } =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHOR - Jason Stajich, Aaron Mackey Email jason-at-bioperl.org Email amackey-at-virginia.edu =head1 CONTRIBUTORS Albert Vilella avilella-AT-gmail-DOT-com Sendu Bala bix@sendu.me.uk =head1 TODO RST parsing -- done, Avilella contributions bugzilla#1506, added by jason 1.29 -- still need to parse in joint probability and non-syn changes at site table =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut # Let the code begin... package Bio::Tools::Phylo::PAML; use vars qw($RSTFILENAME); use strict; # Object preamble - inherits from Bio::Root::Root use base qw(Bio::Root::Root Bio::Root::IO Bio::AnalysisParserI); BEGIN { $RSTFILENAME = 'rst'; # where to get the RST data from } # other objects used: use IO::String; use File::Spec; use Bio::TreeIO; use Bio::Tools::Phylo::PAML::Result; use Bio::LocatableSeq; use Bio::PrimarySeq; use Bio::Matrix::PhylipDist; use Bio::Tools::Phylo::PAML::ModelResult; =head2 new Title : new Usage : my $obj = Bio::Tools::Phylo::PAML->new(%args); Function: Builds a new Bio::Tools::Phylo::PAML object Returns : Bio::Tools::Phylo::PAML Args : Hash of options: -file, -fh, -dir -file (or -fh) should contain the contents of the PAML outfile; -dir is the (optional) name of the directory in which the PAML program was run (and includes other PAML-generated files from which we can try to gather data) =cut sub new { my ($class, @args) = @_; my $self = $class->SUPER::new(@args); $self->_initialize_io(@args); my ($dir) = $self->_rearrange([qw(DIR)], @args); $self->{_dir} = $dir if defined $dir; return $self; } =head2 Implement Bio::AnalysisParserI interface =cut =head2 next_result Title : next_result Usage : $result = $obj->next_result(); Function: Returns the next result available from the input, or undef if there are no more results. Example : Returns : a Bio::Tools::Phylo::PAML::Result object Args : none =cut sub next_result { my ($self) = @_; my %data; # parse the RST file, if it doesn't exist or if dir is not set # this will just skip the parsing $self->_parse_rst(); my $idlookup; # a hashreference to SEQID (number) ==> 'SEQUENCENAME' # get the various codon and other sequence summary data, if necessary: $self->_parse_summary unless ($self->{'_summary'} && !$self->{'_summary'}->{'multidata'}); # OK, depending on seqtype and runmode now, one of a few things can happen: my $seqtype = $self->{'_summary'}->{'seqtype'}; if ($seqtype eq 'CODONML' || $seqtype eq 'AAML') { my $has_model_line = 0; while (defined ($_ = $self->_readline)) { if ($seqtype eq 'CODONML' && m/^pairwise comparison, codon frequencies:/) { # runmode = -2, CODONML $self->debug("pairwise Ka/Ks\n"); $self->_pushback($_); %data = $self->_parse_PairwiseCodon; last; } elsif ($seqtype eq 'AAML' && m/^ML distances of aa seqs\.$/) { $self->_pushback($_); # get AA distances %data = ( '-AAMLdistmat' => $self->_parse_aa_dists()); # $self->_pushback($_); # %data = $self->_parse_PairwiseAA; # last; } elsif (m/^Model\s+(\d+)/ || ((! $has_model_line && m/^TREE/) && $seqtype eq 'CODONML')) { $self->_pushback($_); my $model = $self->_parse_NSsitesBatch; push @{$data{'-NSsitesresults'}}, $model; $has_model_line = 1; } elsif ( m/for each branch/ ) { my %branch_dnds = $self->_parse_branch_dnds; if ( ! defined $data{'-trees'} ) { $self->warn("No trees have been loaded, can't do anything\n"); next; } my ($tree) = @{$data{'-trees'}}; if ( ! $tree || ! ref($tree) || ! $tree->isa('Bio::Tree::Tree') ) { $self->warn("no tree object already stored!\n"); next; } # These need to be added to the Node/branches while ( my ($k,$v) = each %branch_dnds) { # we can probably do better by caching at some point my @nodes; for my $id ( split(/\.\./,$k ) ) { my @nodes_L = map { $tree->find_node(-id => $_) } @{$idlookup->{$id}}; my $n = @nodes_L < 2 ? shift(@nodes_L) : $tree->get_lca(@nodes_L); if ( ! $n ) { $self->warn("no node for $n\n"); } unless( $n->is_Leaf && $n->id) { $n->id($id); } push @nodes, $n; } my ($parent,$child) = @nodes; while ( my ($kk,$vv) = each %$v ) { $child->add_tag_value($kk,$vv); } } } elsif (m/^TREE/) { # runmode = 0 $self->_pushback($_); ($data{'-trees'},$idlookup) = $self->_parse_Forestry; #last; } elsif (m/Heuristic tree search by stepwise addition$/ ) { # runmode = 3 $self->throw( -class => 'Bio::Root::NotImplemented', -text => "StepwiseAddition not yet implemented!" ); # $self->_pushback($_); # %data = $self->_parse_StepwiseAddition; # last; } elsif (m/Heuristic tree search by NNI perturbation$/) { # runmode = 4 $self->throw( -class => 'Bio::Root::NotImplemented', -text => "NNI Perturbation not yet implemented!" ); # $self->_pushback($_); # %data = $self->_parse_Perturbation; # last; } elsif (m/^stage 0:/) { # runmode = (1 or 2) $self->throw( -class => 'Bio::Root::NotImplemented', -text => "StarDecomposition not yet implemented!" ); $self->_pushback($_); %data = $self->_parse_StarDecomposition; last; } } } elsif ($seqtype eq 'BASEML') { while ( defined($_ = $self->_readline) ) { if ( /^Distances:/ ) { $self->_pushback($_); my ($kappa,$alpha) = $self->_parse_nt_dists(); %data = ( '-kappa_distmat' => $kappa, '-alpha_distmat' => $alpha ); } elsif ( /^TREE/ ) { $self->_pushback($_); ($data{'-trees'},$idlookup) = $self->_parse_Forestry; } } } elsif ($seqtype eq 'YN00') { while ($_ = $self->_readline) { if ( m/^Estimation by the method|\(B\) Yang & Nielsen \(2000\) method/ ) { $self->_pushback($_); %data = $self->_parse_YN_Pairwise; last; } } } if (%data) { $data{'-version'} = $self->{'_summary'}->{'version'}; $data{'-seqs'} = $self->{'_summary'}->{'seqs'}; $data{'-patterns'} = $self->{'_summary'}->{'patterns'}; $data{'-ngmatrix'} = $self->{'_summary'}->{'ngmatrix'}; $data{'-codonpos'} = $self->{'_summary'}->{'codonposition'}; $data{'-codonfreq'} = $self->{'_summary'}->{'codonfreqs'}; $data{'-model'} = $self->{'_summary'}->{'model'}; $data{'-seqfile'} = $self->{'_summary'}->{'seqfile'}; $data{'-aadistmat'} = $self->{'_summary'}->{'aadistmat'}; $data{'-stats'} = $self->{'_summary'}->{'stats'}; $data{'-aafreq'} = $self->{'_summary'}->{'aafreqs'}; $data{'-ntfreq'} = $self->{'_summary'}->{'ntfreqs'}; $data{'-input_params'} = $self->{'_summary'}->{'inputparams'}; $data{'-rst'} = $self->{'_rst'}->{'rctrted_seqs'}; $data{'-rst_persite'} = $self->{'_rst'}->{'persite'}; $data{'-rst_trees'} = $self->{'_rst'}->{'trees'}; return Bio::Tools::Phylo::PAML::Result->new(%data); } else { return; } } sub _parse_summary { my ($self) = @_; # Depending on whether verbose > 0 or not, and whether the result # set comes from a multi-data run, the first few lines could be # various things; we're going to throw away any sequence data # here, since we'll get it later anyways # multidata ? : \n\nData set 1\n # verbose ? : cleandata ? : \nBefore deleting alignment gaps. \d sites\n # [ sequence printout ] # \nAfter deleting gaps. \d sites\n" # : [ sequence printout ] # CODONML (in paml 3.12 February 2002) <<-- what we want to see! my $SEQTYPES = qr( (?: (?: CODON | AA | BASE | CODON2AA ) ML ) | YN00 )x; my $line; $self->{'_already_parsed_seqs'}=$self->{'_already_parsed_seqs'}?1:0; my @lines; while ($_ = $self->_readline) { push @lines, $_; if ( m/^($SEQTYPES) \s+ # seqtype: CODONML, AAML, BASEML, CODON2AAML, YN00, etc (?: \(in \s+ ([^\)]+?) \s* \) \s* )? # version: "paml 3.12 February 2002"; not present < 3.1 or YN00 (\S+) \s* # tree filename (?: (.+?) )? # model description (not there in YN00) \s* $ # trim any trailing space /ox ) { @{$self->{'_summary'}}{qw(seqtype version seqfile model)} = ($1, $2,$3,$4); defined $self->{'_summary'}->{'model'} && $self->{'_summary'}->{'model'} =~ s/Model:\s+//; $self->_pushback($_) if $self->{'_summary'}->{'seqtype'} eq 'AAMODEL'; last; } elsif (m/^Data set \d$/) { $self->{'_summary'} = {}; $self->{'_summary'}->{'multidata'}++; } elsif ( m/^Before\s+deleting\s+alignment\s+gaps/ ) { #Gap my ($phylip_header) = $self->_readline; $self->_parse_seqs; } elsif ((@lines > 3) && ($self->{'_already_parsed_seqs'}!=1)) { #No gap $self->_parse_seqs; } elsif ( /Printing out site pattern counts/) { $self->_parse_patterns; } } unless (defined $self->{'_summary'}->{'seqtype'}) { $self->throw( -class => 'Bio::Root::NotImplemented', -text => 'Unknown format of PAML output did not see seqtype'); } my $seqtype = $self->{'_summary'}->{'seqtype'}; if ($seqtype eq "CODONML") { $self->_parse_inputparams(); # settings from the .ctl file # that get printed $self->_parse_patterns(); # codon patterns - not very interesting $self->_parse_seqs(); # the sequences data used for analysis $self->_parse_codoncts(); # counts and distributions of codon/nt # usage $self->_parse_codon_freqs(); # codon frequencies $self->_parse_distmat(); # NG distance matrices } elsif ($seqtype eq "AAML") { $self->_parse_inputparams; $self->_parse_patterns(); $self->_parse_seqs(); # the sequences data used for analysis $self->_parse_aa_freqs(); # AA frequencies # get AA distances $self->{'_summary'}->{'aadistmat'} = $self->_parse_aa_dists(); } elsif ($seqtype eq "CODON2AAML") { $self->throw( -class => 'Bio::Root::NotImplemented', -text => 'CODON2AAML parsing not yet implemented!'); } elsif ($seqtype eq "BASEML") { $self->_parse_patterns(); $self->_parse_seqs(); $self->_parse_nt_freqs(); } elsif ($seqtype eq "YN00") { $self->_parse_codon_freqs(); $self->_parse_codoncts(); $self->_parse_distmat(); # NG distance matrices } else { $self->throw( -class => 'Bio::Root::NotImplemented', -text => 'Unknown seqtype, not yet implemented!', -value => $seqtype ); } } sub _parse_inputparams { my ($self) = @_; while( defined($_ = $self->_readline ) ) { if(/^((?:Codon frequencies)|(?:Site-class models))\s*:\s+(.+)/ ) { my ($param,$val) = ($1,$2); $self->{'_summary'}->{'inputparams'}->{$param} = $val; } elsif( /^\s+$/ ) { next; } elsif( /^ns\s+=\s+/ || /^Frequencies/ ) { $self->_pushback($_); last; } } } sub _parse_codon_freqs { my ($self) = @_; my ($okay,$done) = (0,0); while( defined($_ = $self->_readline ) ) { if( /^Nei|\(A\) Nei/ ) { $self->_pushback($_); last } last if( $done); next if ( /^\s+/); next unless($okay || /^Codon position x base \(3x4\) table\, overall/ ); $okay = 1; if( s/^position\s+(\d+):\s+// ) { my $pos = $1; s/\s+$//; my @bases = split; foreach my $str ( @bases ) { my ( $base,$freq) = split(/:/,$str,2); $self->{'_summary'}->{'codonposition'}->[$pos-1]->{$base} = $freq; } $done = 1 if $pos == 3; } } $done = 0; while( defined( $_ = $self->_readline) ) { if( /^Nei\s\&\sGojobori|\(A\)\sNei-Gojobori/ ) { $self->_pushback($_); last } last if ( $done ); if( /^Codon frequencies under model, for use in evolver:/ ){ while( defined( $_ = $self->_readline) ) { last if( /^\s+$/ ); s/^\s+//; s/\s+$//; push @{$self->{'_summary'}->{'codonfreqs'}},[split]; } $done = 1; } } } sub _parse_aa_freqs { my ($self) = @_; my ($okay,$done,$header) = (0,0,0); my (@bases); my $numseqs = scalar @{$self->{'_summary'}->{'seqs'} || []}; while ( defined($_ = $self->_readline ) ) { if ( /^TREE/ || /^AA distances/ ) { $self->_pushback($_); last; } last if( $done); next if ( /^\s+$/ || /^\(Ambiguity/ ); if ( /^Frequencies\./ ) { $okay = 1; } elsif ( ! $okay ) { # skip till we see 'Frequencies. next; } elsif ( ! $header ) { s/^\s+//; # remove leading whitespace @bases = split; # get an array of the all the aa names $header = 1; $self->{'_summary'}->{'aafreqs'} = {}; # reset/clear values next; } elsif ( /^\#\s+constant\s+sites\:\s+ (\d+)\s+ # constant sites \(\s*([\d\.]+)\s*\%\s*\)/x) { $self->{'_summary'}->{'stats'}->{'constant_sites'} = $1; $self->{'_summary'}->{'stats'}->{'constant_sites_percentage'} = $2; } elsif ( /^ln\s+Lmax\s+\(unconstrained\)\s+\=\s+(\S+)/x ) { $self->{'_summary'}->{'stats'}->{'loglikelihood'} = $1; $done = 1; # done for sure } else { my ($seqname,@freqs) = split; my $basect = 0; foreach my $f ( @freqs ) { # this will also store 'Average' $self->{'_summary'}->{'aafreqs'}->{$seqname}->{$bases[$basect++]} = $f; } } } } # This is for parsing the automatic tree output sub _parse_StarDecomposition { my ($self) = @_; my %data; return %data; } sub _parse_aa_dists { my ($self) = @_; my ($okay,$seen,$done) = (0,0,0); my (%matrix,@names,@values); my $numseqs = scalar @{$self->{'_summary'}->{'seqs'} || []}; my $type = ''; while( defined ($_ = $self->_readline ) ) { last if $done; if( /^TREE/ ) { $self->_pushback($_); last; } if( /^\s+$/ ) { last if( $seen ); next; } if( /^(AA|ML) distances/ ) { $okay = 1; $type = $1; next; } s/\s+$//g; # remove trailing space if( $okay ) { my ($seqname,@vl) = split; $seen = 1; my $i = 0; # hacky workaround to problem with 3.14 aaml if( $type eq 'ML' && ! @names && # first entry @vl) { # not empty push @names, $self->{'_summary'}->{'seqs'}->[0]->display_id; } for my $s ( @names ) { last unless @vl; $matrix{$seqname}->{$s} = $matrix{$s}->{$seqname} = shift @vl; } push @names, $seqname; $matrix{$seqname}->{$seqname} = 0; } $done = 1 if( scalar @names == $numseqs); } my %dist; my $i = 0; @values = (); foreach my $lname ( @names ) { my @row; my $j = 0; foreach my $rname ( @names ) { my $v = $matrix{$lname}->{$rname}; $v = $matrix{$rname}->{$lname} unless defined $v; push @row, $v; $dist{$lname}{$rname} = [$i,$j++]; } $i++; push @values, \@row; } return new Bio::Matrix::PhylipDist (-program=> $self->{'_summary'}->{'seqtype'}, -matrix => \%dist, -names => \@names, -values => \@values ); } sub _parse_patterns { my ($self) = @_; my ($patternct,@patterns,$ns,$ls); return if exists $self->{'_summary'}->{'patterns'}; while( defined($_ = $self->_readline) ) { if( /^Codon\s+(usage|position)/ || /Model/) { $self->_pushback($_); last; } elsif( $patternct ) { # last unless ( @patterns == $patternct ); last if( /^\s+$/ ); s/^\s+//; push @patterns, split; } elsif( /^ns\s+\=\s*(\d+)\s+ls\s+\=\s*(\d+)/ ) { ($ns,$ls) = ($1,$2); } elsif( /^\# site patterns \=\s*(\d+)/ ) { $patternct = $1; } else { # $self->debug("Unknown line: $_"); } } $self->{'_summary'}->{'patterns'} = { -patterns => \@patterns, -ns => $ns, -ls => $ls}; } sub _parse_seqs { # this should in fact be packed into a Bio::SimpleAlign object instead of # an array but we'll stay with this for now my ($self) = @_; # Use this flag to deal with paml 4 vs 3 differences # In PAML 4 the sequences precede the CODONML|BASEML|AAML # while in PAML3 the files start off with this return 1 if $self->{'_already_parsed_seqs'}; my (@firstseq,@seqs); while ( defined ($_ = $self->_readline) ) { if ( /^(Printing|After|TREE|Codon)/ ) { $self->_pushback($_); last; } last if( /^\s+$/ && @seqs > 0 ); next if ( /^\s+$/ ); next if( /^\d+\s+$/ ); # we are reading PHYLIP format my ($name,$seqstr) = split(/\s+/,$_,2); $seqstr =~ s/\s+//g; # remove whitespace unless( @firstseq) { @firstseq = split(//,$seqstr); push @seqs, Bio::LocatableSeq->new(-display_id => $name, -seq => $seqstr); } else { my $i = 0; my $v; while (($v = index($seqstr,'.',$i)) >= $i ) { # replace the '.' with the correct seq from the substr($seqstr,$v,1,$firstseq[$v]); $i = $v; } push @seqs, Bio::LocatableSeq->new(-display_id => $name, -seq => $seqstr); } } if( @seqs > 0 ) { $self->{'_summary'}->{'seqs'} = \@seqs; $self->{'_already_parsed_seqs'} = 1; } 1; } sub _parse_codoncts { } sub _parse_distmat { my ($self) = @_; my @results; my $ver = 3.14; while( defined ($_ = $self->_readline) ) { next if/^\s+$/; # Bypass the reference information (4 lines) if (/^\(A\)\sNei-Gojobori\s\(1986\)\smethod/) { $ver = 3.15; $_ = $self->_readline; $_ = $self->_readline; $_ = $self->_readline; $_ = $self->_readline; } last; } return unless (/^Nei\s*\&\s*Gojobori/); # skip the next line is ver > 3.15 $self->_readline if ($ver > 3.14); # skip the next 3 lines if( $self->{'_summary'}->{'seqtype'} eq 'CODONML' ) { $self->_readline; $self->_readline; $self->_readline; } my $seqct = 0; my @seqs; while( defined ($_ = $self->_readline ) ) { last if( /^\s+$/ && exists $self->{'_summary'}->{'ngmatrix'} ); next if( /^\s+$/ || /^NOTE:/i ); chomp; my ($seq,$rest) = split(/\s+/,$_,2); $rest = '' unless defined $rest; # get rid of empty messages my $j = 0; if( $self->{'_summary'}->{'seqtype'} eq 'YN00') { push @seqs, Bio::PrimarySeq->new(-display_id => $seq); } while ( $rest && $rest =~ /(\-?\d+(\.\d+)?)\s*\(\-?(\d+(\.\d+)?)\s+(\-?\d+(\.\d+)?)\)/g ) { $self->{'_summary'}->{'ngmatrix'}->[$j++]->[$seqct] = { 'omega' => $1, 'dN' => $3, 'dS' => $5 }; } $seqct++; } if($self->{'_summary'}->{'seqtype'} eq 'YN00' && @seqs ){ $self->{'_summary'}->{'seqs'} = \@seqs; } 1; } sub _parse_PairwiseCodon { my ($self) = @_; my @result; my ($a,$b,$log,$model,$t,$kappa,$omega); while( defined( $_ = $self->_readline) ) { if( /^pairwise comparison, codon frequencies\:\s*(\S+)\./) { $model = $1; } elsif( /^(\d+)\s+\((\S+)\)\s+\.\.\.\s+(\d+)\s+\((\S+)\)/ ) { ($a,$b) = ($1,$3); } elsif( /^lnL\s+\=\s*(\-?\d+(\.\d+)?)/ ) { $log = $1; if( defined( $_ = $self->_readline) ) { s/^\s+//; ($t,$kappa,$omega) = split; } } elsif( m/^t\=\s*(\d+(\.\d+)?)\s+ S\=\s*(\d+(\.\d+)?)\s+ N\=\s*(\d+(\.\d+)?)\s+ dN\/dS\=\s*(\d+(\.\d+)?)\s+ dN\=\s*(\d+(\.\d+)?)\s+ dS\=\s*(\d+(\.\d+)?)/ox ) { $result[$b-1]->[$a-1] = { 'lnL' => $log, 't' => defined $t && length($t) ? $t : $1, 'S' => $3, 'N' => $5, 'kappa' => $kappa, 'omega' => defined $omega && length($omega) ? $omega : $7, 'dN' => $9, 'dS' => $11 }; } elsif( /^\s+$/ ) { next; } elsif( /^\s+(\d+\.\d+)\s+(\d+\.\d+)\s+(\d+\.\d+)/ ) { } else { $self->debug( "unknown line: $_"); } } return ( -mlmatrix => \@result); } sub _parse_YN_Pairwise { my ($self) = @_; my @result; while( defined( $_ = $self->_readline) ) { last if( /^seq\.\s+seq\./); } while( defined( $_ = $self->_readline) ) { if( m/^\s+(\d+)\s+ # seq # (\d+)\s+ # seq # (\d+(\.\d+))\s+ # S (\d+(\.\d+))\s+ # N (\d+(\.\d+))\s+ # t (\d+(\.\d+))\s+ # kappa (\d+(\.\d+))\s+ # omega \-??(\d+(\.\d+))\s+ # dN \+\-\s+ \-??(\d+(\.\d+))\s+ # dN SE \-??(\d+(\.\d+))\s+ # dS \+\-\s+ \-??(\d+(\.\d+))\s+ # dS SE /ox ) { $result[$2-1]->[$1-1] = { 'S' => $3, 'N' => $5, 't' => $7, 'kappa' => $9, 'omega' => $11, 'dN' => $13, 'dN_SE' => $15, 'dS' => $17, 'dS_SE' => $19, }; } elsif( /^\s+$/ ) { next; } elsif( /^\(C\) LWL85, LPB93 & LWLm methods/) { $self->_pushback($_); last; } } return ( -mlmatrix => \@result); } sub _parse_Forestry { my ($self) = @_; my ($instancecount,$num_param, $loglikelihood,$score,$done,$treelength) = (0,0,0,0,0,0); my $okay = 0; my (@ids,%match,@branches,@trees); while( defined ($_ = $self->_readline) ) { last if $done; if( s/^TREE\s+\#\s*\d+:\s+// ) { ($score) = (s/MP\s+score\:\s+(\S+)\s+$// ); @ids = /(\d+)[\,\)]/g; } elsif( /^Node\s+\&/ || /^\s+N37/ || /^(CODONML|AAML|YN00|BASEML)/ || /^\*\*/ || /^Detailed output identifying parameters/) { $self->_pushback($_); $done = 1; last; } elsif( /^tree\s+length\s+\=\s+(\S+)/ ) { $treelength = $1; # not going to store this for now # as it is directly calculated from # $tree->total_branch_length; } elsif( /^\s*lnL\(.+np\:\s*(\d+)\)\:\s+(\S+)/ ) { # elsif( /^\s*lnL\(.+\)\:\s+(\S+)/ ) { ($num_param,$loglikelihood) = ($1,$2); } elsif( /^\(/) { s/([\,:])\s+/$1/g; my $treestr = new IO::String($_); my $treeio = Bio::TreeIO->new(-fh => $treestr, -format => 'newick'); my $tree = $treeio->next_tree; if( $tree ) { $tree->score($loglikelihood); $tree->id("num_param:$num_param"); if( $okay > 0 ) { # we don't save the trees with the number labels if( ! %match && @ids) { my $i = 0; for my $m ( /([^():,]+):/g ) { $match{shift @ids} = [$m]; } my %grp; while ( my $br = shift @branches ) { my ($parent,$child) = @$br; if( $match{$child} ) { push @{$match{$parent}}, @{$match{$child}}; } else { push @branches, $br; } } if( $self->verbose > 1 ) { for my $k ( sort { $a <=> $b } keys %match ) { $self->debug( "$k -> ", join(",",@{$match{$k}}), "\n"); } } } # Associate SEs to nodes using tags if (defined($self->{_SEs})) { my @SEs = split(" ",$self->{_SEs}); my $i = 0; foreach my $parent_id ( map {/\d+\.\.(\d+)/} split(" ",$self->{_branch_ids}) ) { my @nodes; my @node_ids = @{$match{$parent_id}}; my @nodes_L = map { $tree->find_node(-id => $_) } @node_ids; my $n = @nodes_L < 2 ? shift(@nodes_L) : $tree->get_lca(@nodes_L); if( ! $n ) { $self->warn("no node could be found for node in SE assignation (no lca?)"); } $n->add_tag_value('SE',$SEs[$i]); $i++; } } push @trees, $tree; } } $okay++; } elsif( /^SEs for parameters/ ) { my $se_line = $self->_readline; $se_line =~ s/\n//; $self->{_SEs} = $se_line; } elsif( /^\s*\d+\.\.\d+/ ) { push @branches, map { [split(/\.\./,$_)] } split; my $ids = $_; $ids =~ s/\n//; $self->{_branch_ids} = $ids; } } return \@trees,\%match; } sub _parse_NSsitesBatch { my $self = shift; my (%data,$idlookup); my ($okay,$done) =(0,0); while( defined($_ = $self->_readline) ) { last if $done; next if /^\s+$/; next unless( $okay || /^Model\s+\d+/ || /^TREE/); if( /^Model\s+(\d+)/ ) { if( $okay ) { # this only happens if $okay was already 1 and # we hit a Model line $self->_pushback($_); $done = 1; } else { chomp; $data{'-model_num'} = $1; ($data{'-model_description'}) = ( /\:\s+(.+)/ ); $okay = 1; } } elsif( /^Time used\:\s+(\S+)/ ) { $data{'-time_used'} = $1; $done = 1; } elsif( /^kappa\s+\(ts\/tv\)\s+\=\s+(\S+)/ ) { $data{'-kappa'} = $1; } elsif( /^TREE/ ) { $self->_pushback($_); ($data{'-trees'},$idlookup) = $self->_parse_Forestry; if( defined $data{'-trees'} && scalar @{$data{'-trees'}} ) { $data{'-likelihood'}= $data{'-trees'}->[0]->score; } $okay = 1; } elsif ( /^omega\s+\(dn\/ds\)\s+\=\s+(\S+)/i ) { # for M0 (single ratio for the entire tree) # explicitly put '1.00000' rather than '1', because \d+\.\d{5} # is reported in all other cases. my @p = (q/1.00000/); # since there is only one class, my @w = $1; $data{'-dnds_site_classes'} = { 'p' => \@p, 'w' => \@w}; # since no K=X is provided, put 1 here $data{q/-num_site_classes/} = 1; } elsif( /^(Naive Empirical Bayes)|(Bayes Empirical Bayes)|(Positively\sselected\ssites)/i ) { $self->_pushback($_); my ($sites,$neb,$beb) = $self->_parse_Pos_selected_sites; $data{'-pos_sites'} = $sites; $data{'-neb_sites'} = $neb; $data{'-beb_sites'} = $beb; } elsif( /^dN/i ) { if( /K\=(\d+)/ ) { $data{'-num_site_classes'} = $1; while ($_ = $self->_readline) { unless ($_ =~ /^\s+$/) { $self->_pushback($_); last; } } if ( /^site class/ ) { $self->_readline; my $tmp = $self->_readline; my @p = $tmp =~ /(\d+\.\d{5})/g; $tmp = $self->_readline; my @b_w = $tmp =~ /(\d+\.\d{5})/g; $tmp = $self->_readline; my @f_w = $tmp =~ /(\d+\.\d{5})/g; my @w; foreach my $i (0..$#b_w) { push @w, { q/background/ => $b_w[$i], q/foreground/ => $f_w[$i] }; } $data{'-dnds_site_classes'} = { q/p/ => \@p, q/w/ => \@w }; } else { my $tmp = $self->_readline; my @p = $tmp =~ /(\d+\.\d{5})/g; $tmp = $self->_readline; my @w = $tmp =~ /(\d+\.\d{5})/g; $data{'-dnds_site_classes'} = { 'p' => \@p, 'w' => \@w}; } } elsif( /for each branch/ ) { my %branch_dnds = $self->_parse_branch_dnds; if( ! defined $data{'-trees'} ) { $self->warn("No trees have been loaded, can't do anything\n"); next; } my ($tree) = @{$data{'-trees'}}; if( ! $tree || ! ref($tree) || ! $tree->isa('Bio::Tree::Tree') ) { $self->warn("no tree object already stored!\n"); next; } # These need to be added to the Node/branches while( my ($k,$v) = each %branch_dnds) { # we can probably do better by caching at some point my @nodes; for my $id ( split(/\.\./,$k ) ) { my @nodes_L = map { $tree->find_node(-id => $_) } @{$idlookup->{$id}}; my $n = @nodes_L < 2 ? shift(@nodes_L) : $tree->get_lca(@nodes_L); if( ! $n ) { $self->warn("no node could be found for $id (no lca?)"); } unless( $n->is_Leaf && $n->id) { $n->id($id); } push @nodes, $n; } my ($parent,$child) = @nodes; while ( my ($kk,$vv) = each %$v ) { $child->add_tag_value($kk,$vv); } } } } elsif( /^Parameters in beta:/ ) { $_ = $self->_readline; # need the next line if ( /p\=\s+(\S+)\s+q\=\s+(\S+)/ ) { $data{'-shape_params'} = { 'shape' => 'beta', 'p' => $1, 'q' => $2 }; } else { $self->warn("unparseable beta parameters: $_"); } } elsif( /^Parameters in beta\&w\>1:/ ) { # Parameters in beta&w>1: # p0= 1.00000 p= 0.07642 q= 0.85550 # (p1= 0.00000) w= 1.00000 $_ = $self->_readline; # need the next line my ($p0,$p,$q,$p1,$w); if ( /p0\=\s+(\S+)\s+p\=\s+(\S+)\s+q\=\s+(\S+)/ ) { $p0 = $1; $p = $2; $q = $3; } else { $self->warn("unparseable beta parameters: $_"); } $_ = $self->_readline; # need the next line if ( /\(p1\=\s+(\S+)\)\s+w\=\s*(\S+)/ ) { $p1 = $1; $w = $2; $data{'-shape_params'} = { 'shape' => 'beta', 'p0' => $p0, 'p' => $p, 'q' => $q, 'p1' => $p1, 'w' => $w }; } else { $self->warn("unparseable beta parameters: $_"); } } elsif( /^alpha\s+\(gamma\)\s+\=\s+(\S+)/ ) { my $gamma = $1; $_ = $self->_readline; my (@r,@f); if( s/^r\s+\(\s*\d+\)\:\s+// ) { @r = split; } $_ = $self->_readline; if( s/^f\s*\:\s+// ) { @f = split; } $data{'-shape_params'} = { 'shape' => 'alpha', 'gamma' => $gamma, 'r' => \@r, 'f' => \@f }; } } return new Bio::Tools::Phylo::PAML::ModelResult(%data); } sub _parse_Pos_selected_sites { my $self = shift; my $okay = 0; my (%sites) = ('default' => [], 'neb' => [], 'beb' => []); my $type = 'default'; while( defined($_ = $self->_readline) ) { next if ( /^\s+$/ || /^\s+Pr\(w\>1\)/ ); if( /^Time used/ || /^TREE/) { $self->_pushback($_); last; } if( /^Naive Empirical Bayes/i ) { $type = 'neb'; } elsif( /^Bayes Empirical Bayes/i ) { $type = 'beb'; } elsif( /^Positively selected sites/ ) { $okay = 1; } elsif( $okay && /^\s+(\d+)\s+(\S+)\s+(\-?\d+(?:\.\d+)?)(\**)\s+(\-?\d+(?:\.\d+)?)\s+\+\-\s+(\-?\d+(?:\.\d+)?)/ ) { my $signif = $4; $signif = '' unless defined $signif; push @{$sites{$type}}, [$1,$2,$3,$signif,$5,$6]; } elsif( $okay && /^\s+(\d+)\s+(\S+)\s+(\-?\d*(?:.\d+))(\**)\s+(\-?\d+(?:\.\d+)?)/ ) { my $signif = $4; $signif = '' unless defined $signif; push @{$sites{$type}}, [$1,$2,$3,$signif,$5]; } elsif( $okay && /^\s+(\d+)\s+(\S)\s+([\d\.\-\+]+)(\**)/ ) { my $signif = $4; $signif = '' unless defined $signif; push @{$sites{$type}}, [$1,$2,$3,$signif]; } } return ($sites{'default'}, $sites{'neb'}, $sites{'beb'}); } sub _parse_branch_dnds { my $self = shift; my ($okay) = (0); my %branch_dnds; my @header; while(defined($_ = $self->_readline ) ) { next if( /^\s+$/); next unless ( $okay || /^\s+branch\s+t/); if( /^\s+branch\s+(.+)/ ) { s/^\s+//; @header = split(/\s+/,$_); $okay = 1; } elsif( /^\s*(\d+\.\.\d+)/ ) { my $branch = $1; s/^\s+//; my $i =0; # fancyness just maps the header names like 't' or 'dN' # into the hash so we get at the end of the day # 't' => 0.067 # 'dN'=> 0.001 $branch_dnds{$branch} = { map { $header[$i++] => $_ } split}; } else { $self->_pushback($_); last; } } return %branch_dnds; } #baseml stuff sub _parse_nt_freqs { my ($self) = @_; my ($okay,$done,$header) = (0,0,0); my (@bases); my $numseqs = scalar @{$self->{'_summary'}->{'seqs'} || []}; while( defined($_ = $self->_readline ) ) { if( /^TREE/ || /^Distances/ ) { $self->_pushback($_); last } last if( $done); next if ( /^\s+$/ || /^\(Ambiguity/ ); if( /^Frequencies\./ ) { $okay = 1; } elsif( ! $okay ) { # skip till we see 'Frequencies. next; } elsif ( ! $header ) { s/^\s+//; # remove leading whitespace @bases = split; # get an array of the all the aa names $header = 1; $self->{'_summary'}->{'ntfreqs'} = {}; # reset/clear values next; } elsif( /^\#\s+constant\s+sites\:\s+ (\d+)\s+ # constant sites \(\s*([\d\.]+)\s*\%\s*\)/ox){ $self->{'_summary'}->{'stats'}->{'constant_sites'} = $1; $self->{'_summary'}->{'stats'}->{'constant_sites_percentage'} = $2; } elsif( /^ln\s+Lmax\s+\(unconstrained\)\s+\=\s+(\S+)/ox ) { $self->{'_summary'}->{'stats'}->{'loglikelihood'} = $1; $done = 1; # done for sure } else { my ($seqname,@freqs) = split; my $basect = 0; foreach my $f ( @freqs ) { # this will also store 'Average' $self->{'_summary'}->{'ntfreqs'}->{$seqname}->{$bases[$basect++]} = $f; } } } } sub _parse_nt_dists { my ($self) = @_; my ($okay,$seen,$done) = (0,0,0); my (%matrix,@names); my $numseqs = scalar @{$self->{'_summary'}->{'seqs'} || []}; my $type = ''; while( defined ($_ = $self->_readline ) ) { if( /^TREE/ ) { $self->_pushback($_); last; } last if $done; next if(/^This matrix is not used in later/); if( /^\s+$/ ) { last if( $seen ); next; } if( /^Distances:(\S+)\s+\(([^\)]+)\)\s+\(alpha set at (\-?\d+\.\d+)\)/ ) { $okay = 1; $type = $1; next; } s/\s+$//g; # remove trailing space if( $okay ) { my ($seqname,$vl) = split(/\s+/,$_,2); $seen = 1; my $i = 0; if( defined $vl ) { while( $vl =~ /(\-?\d+\.\d+)\s*\(\s*(\-?\d+\.\d+)\s*\)\s*/g ) { my ($kappa,$alpha) = ($1,$2); $matrix{$seqname}{$names[$i]} = $matrix{$names[$i]}{$seqname} = [$kappa,$alpha]; $i++; } unless($i) { $self->warn("no matches for $vl\n"); } } push @names, $seqname; $matrix{$seqname}->{$seqname} = [0,0]; } $done = 1 if( scalar @names == $numseqs); } my %dist; my $i = 0; my (@kvalues,@avalues); foreach my $lname ( @names ) { my (@arow,@krow); my $j = 0; foreach my $rname ( @names ) { my $v = $matrix{$lname}{$rname}; push @krow, $v->[0]; # kappa values push @arow, $v->[1]; # alpha $dist{$lname}{$rname} = [$i,$j++]; } $i++; push @kvalues, \@krow; push @avalues, \@arow; } return (Bio::Matrix::PhylipDist->new (-program=> $self->{'_summary'}->{'seqtype'}, -matrix => \%dist, -names => \@names, -values => \@kvalues ), Bio::Matrix::PhylipDist->new (-program=> $self->{'_summary'}->{'seqtype'}, -matrix => \%dist, -names => \@names, -values => \@avalues ) ); } # BASEML sub _parse_rate_parametes { my $self = shift; my (%rate_parameters); while( defined($_ = $self->_readline) ) { if( /^Rate\s+parameters:\s+/ ) { s/\s+$//; $rate_parameters{'rate_parameters'} = [split(/\s+/,$_)]; } elsif(/^Base\s+frequencies:\s+/) { s/\s+$//; $rate_parameters{'base_frequencies'} = [split(/\s+/,$_)]; } elsif( m/^Rate\s+matrix\s+Q,\s+Average\s+Ts\/Tv\s+(\([^\)+]+\))?\s*\=\s+ (\-?\d+\.\d+)/x) { $rate_parameters{'average_TsTv'} = $1; while( defined ($_ = $self->_readline) ) { # short circuit last if(/^\s+$/); if( /^alpha/ ) { $self->_pushback($_); last; } s/^\s+//; s/\s+$//; push @{$rate_parameters{'rate_matrix_Q'}}, [split]; } } elsif(/^alpha\s+\(gamma,\s+K=\s*(\d+)\s*\)\s*\=\s*(\-?\d+\.\d+)/ ) { $rate_parameters{'K'} = $1; $rate_parameters{'alpha'} = $2; } elsif(s/^(r|f):\s+// ) { my ($p) = $1; s/\s+$//; $rate_parameters{$p} = [split]; } } } # RST parsing sub _parse_rst { my ($self) = @_; return unless $self->{'_dir'} && -d $self->{'_dir'} && -r $self->{'_dir'}; my $rstfile = File::Spec->catfile($self->{'_dir'},$RSTFILENAME); return unless -e $rstfile && ! -z $rstfile; my $rstio = Bio::Root::IO->new(-file => $rstfile); # define whatever data structures you need to store the data # key points are to reuse existing bioperl objs (like Bio::Seq) # where appropriate my (@firstseq,@seqs,@trees,@per_site_prob); my $count; while ( defined( $_ = $rstio->_readline ) ) { # implement the parsing here if( /^TREE\s+\#\s+(\d+)/ ) { while(defined ($_ = $rstio->_readline) ) { if( /tree\s+with\s+node\s+labels\s+for/) { my $tree = Bio::TreeIO->new(-noclose =>1, -fh => $rstio->_fh, -format =>'newick')->next_tree; # cleanup leading/trailing whitespace for my $n ( $tree->get_nodes ) { my $id = $n->id; $id =~ s/^\s+//; $id =~ s/\s+$//; $n->id($id); if( defined( my $blen = $n->branch_length) ) { $blen =~ s/^\s+//; $blen =~ s/\s+$//; $n->branch_length($blen); } } push @trees, $tree; last; } } } elsif(/^Prob\sof\sbest\scharacter\sat\seach\snode,\slisted\sby\ssite/){ $self->{'_rst'}->{'persite'} = []; while(defined($_ = $rstio->_readline ) ) { next if(/^Site/i || /^\s+$/ ); if( s/^\s+(\d+)\s+(\d+)\s+([^:]+)\s*:\s*(.+)// ) { my ($sitenum,$freq,$extant,$ancestral) = ($1,$2,$3,$4); my (@anc_site,@extant_site); @extant_site = {}; while( $extant =~ s/^([A-Z\-]{3})\s+\(([A-Z*])\)\s+//g ) { push @extant_site, {'codon' => $1, 'aa' => $2 }; } while( $ancestral =~ s/^([A-Z\-]{3})\s+([A-Z*])\s+ # codon AA (\S+)\s+ # Prob \(([A-Z*])\s+(\S+)\)\s*//xg # AA Prob ) { push @anc_site, {'codon' => $1, 'aa' => $2, 'prob' => $3, 'Yang95_aa' => $4, 'Yang95_aa_prob' => $5}; } # saving persite $self->{'_rst'}->{'persite'}->[$sitenum] = [@extant_site, @anc_site]; } elsif(/^Summary\sof\schanges\salong\sbranches\./ ) { last; } } } elsif( /^Check\sroot\sfor\sdirections\sof\schange\./ || /^Summary\sof\schanges\salong\sbranches\./ ) { my (@branches,@branch2node,$branch,$node); my $tree = $trees[-1]; if( ! $tree ) { $self->warn("No tree built before parsing Branch changes\n"); last; } my @nodes = ( map { $_->[0] } sort { $a->[1] <=> $b->[1] } map { [$_, $_->id =~ /^(\d+)\_?/] } $tree->get_nodes); unshift @nodes, undef; # fake first node so that index will match nodeid while(defined($_ = $rstio->_readline ) ) { next if /^\s+$/; if( m/^List\sof\sextant\sand\sreconstructed\ssequences/ ) { $rstio->_pushback($_); last; } elsif( /^Branch\s+(\d+):\s+(\d+)\.\.(\d+)\s+/ ) { my ($left,$right); ($branch,$left,$right) = ($1,$2,$3); ($node) = $nodes[$right]; if( ! $node ) { $self->warn("cannot find $right in $tree ($branch $left..$right)\n"); last; } if (/\(n=\s*(\S+)\s+s=\s*(\S+)\)/) { $node->add_tag_value('n', $1); $node->add_tag_value('s', $2); } $branch2node[$branch] = $right; } elsif( /^\s+(\d+)\s+([A-Z*])\s+(\S+)\s+\-\>\s+([A-Z*])\s+(\S+)?/){ my ($site,$anc,$aprob, $derived,$dprob)= ($1,$2,$3,$4,$5); if( ! $node ) { $self->warn("no branch line was previously parsed!"); next; } my %c = ( 'site' => $site, 'anc_aa' => $anc, 'anc_prob' => $aprob, 'derived_aa' => $derived, ); $c{'derived_prob'} = $dprob if defined $dprob; $node->add_tag_value('changes',\%c); } } } elsif( /^Overall\s+accuracy\s+of\s+the\s+(\d+)\s+ancestral\s+sequences:/) { my $line = $rstio->_readline; $line =~ s/^\s+//; $line =~ s/\s+$//; my @overall_site = split(/\s+/,$line); # skip next 2 lines, want the third for ( 1..3 ) { $line = $rstio->_readline; } $line =~ s/^\s+//; $line =~ s/\s+$//; my @overall_seq = split(/\s+/,$line); if( @overall_seq != @overall_site || @overall_seq != @seqs ) { $self->warn("out of sync somehow seqs, site scores don't match\n"); $self->warn("@seqs @overall_seq @overall_site\n"); } for ( @seqs ) { $_->description(sprintf("overall_accuracy_site=%s overall_accuracy_seq=%s", shift @overall_site, shift @overall_seq)); } } elsif (m/^List of extant and reconstructed sequences/o) { my $seqcount = 0; while ( defined( $_ = $rstio->_readline ) ) { last if( /^Overall accuracy of the/ ); if( /^\s+$/ ) { last if $seqcount && $seqcount == @seqs; next; } if( /^\s*(\d+)\s+(\d+)\s+$/ ) { $seqcount = $1; next } # runmode = (0) # this should in fact be packed into a Bio::SimpleAlign object # instead of an array but we'll stay with this for now if ( /^node/ ) { my ($name,$num,$seqstr) = split(/\s+/,$_,3); $name .= $num; $seqstr =~ s/\s+//g; # remove whitespace unless( @firstseq ) { @firstseq = split(//,$seqstr); push @seqs, Bio::LocatableSeq->new(-display_id => $name, -seq => $seqstr); } else { my $i = 0; my $v; while (($v = index($seqstr,'.',$i)) >= $i ) { # replace the '.' with the correct seq from the substr($seqstr,$v,1,$firstseq[$v]); $i = $v; } $self->debug( "adding seq $seqstr\n"); push @seqs, Bio::LocatableSeq->new (-display_id => $name, -seq => $seqstr); } } } $self->{'_rst'}->{'rctrted_seqs'} = \@seqs; } else { } } $self->{'_rst'}->{'trees'} = \@trees; return; } 1;