## $Id: dpAlign.pm 16123 2009-09-17 12:57:27Z cjfields $ # BioPerl module for Bio::Tools::dpAlign # # Please direct questions and support issues to # # Cared for by Yee Man Chan # # Copyright Yee Man Chan # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tools::dpAlign - Perl extension to do pairwise dynamic programming sequence alignment =head1 SYNOPSIS use Bio::Tools::dpAlign; use Bio::SeqIO; use Bio::SimpleAlign; use Bio::AlignIO; use Bio::Matrix::IO; $seq1 = Bio::SeqIO->new(-file => $ARGV[0], -format => 'fasta'); $seq2 = Bio::SeqIO->new(-file => $ARGV[1], -format => 'fasta'); # create a dpAlign object # to do global alignment, specify DPALIGN_GLOBAL_MILLER_MYERS # to do ends-free alignment, specify DPALIGN_ENDSFREE_MILLER_MYERS $factory = new dpAlign(-match => 3, -mismatch => -1, -gap => 3, -ext => 1, -alg => Bio::Tools::dpAlign::DPALIGN_LOCAL_MILLER_MYERS); # actually do the alignment $out = $factory->pairwise_alignment($seq1->next_seq, $seq2->next_seq); $alnout = Bio::AlignIO->new(-format => 'pfam', -fh => \*STDOUT); $alnout->write_aln($out); # To do protein alignment, set the sequence type to protein # By default all protein alignments are using BLOSUM62 matrix # the gap opening cost is 7 and gap extension is 1. These # values are from ssearch. To use your own custom substitution # matrix, you can create a Bio::Matrix::MatrixI object. $parser = Bio::Matrix::IO->new(-format => 'scoring', -file => 'blosum50.mat'); $matrix = $parser->next_matrix; $factory = Bio::Tools::dpAlign->new(-matrix => $matrix, -alg => Bio::Tools::dpAlign::DPALIGN_LOCAL_MILLERMYERS); $seq1->alphabet('protein'); $seq2->alphabet('protein'); $out = $factory->pairwise_alignment($seq1->next_seq, $seq2->next_seq); $alnout->write_aln($out); # use the factory to make some output $factory->align_and_show($seq1, $seq2, STDOUT); # use Phil Green's algorithm to calculate the optimal local # alignment score between two sequences quickly. It is very # useful when you are searching a query sequence in a database # of sequences. Since finding a alignment is more costly # than just calculating scores, you can save time if you only # align sequences that have a high alignment score. # To use this feature, first you call the sequence_profile function # to obtain the profile of the query sequence. $profile = $factory->sequence_profile($query); %scores = (); # Then use a loop to run a database of sequences against the # profile to obtain a table of alignment scores $dbseq = Bio::SeqIO(-file => 'dbseq.fa', -format => 'fasta'); while (defined($seq = $dbseq->next_seq)) { $scores{$seq->id} = $factory->pairwise_alignment_score($profile, $seq); } =head1 DESCRIPTION Dynamic Programming approach is considered to be the most sensitive way to align two biological sequences. There are currently three major types of dynamic programming algorithms: Global Alignment, Local Alignment and Ends-free Alignment. Global Alignment compares two sequences in their entirety. By inserting gaps in the two sequences, it aligns two sequences to minimize the edit distance as defined by the gap cost function and the substitution matrix. Global Alignment is generally applied to two sequences that are very similar in length and content. Local Alignment instead attempts to find out the subsequences that has the minimal edit distance among all possible subsequences. It is good for sequences that has a stretch of subsequences that are similar to each other. Ends-free Alignment is a special case of Global Alignment. There are no gap penalty imposed for the gaps that extended from the end points of two sequences. Therefore it will be a good application when you think one sequence is contained by the other or when you think two sequences overlap each other. Dynamic Programming was first introduced by Needleman-Wunsch (1970) to globally align two sequences. The idea of local alignment was later introduced by Smith-Waterman (1981). Gotoh (1982) improved both algorithms by introducing auxillary arrays that reduced the time complexity of the algorithms to O(m*n). Miller-Myers (1988) exploits the divide-and-conquer idea introduced by Hirschberg (1975) to solve the affine gap cost dynamic programming using only linear space. At the time of this writing, it is accepted that Miller-Myers is the fastest single CPU implementation and using the least memory that is truly equivalent to original algorithm introduced by Needleman-Wunsch. According to Aaron Mackey, Phil Green's SWAT implemention introduced a heuristic that does not consider paths throught the matrix where the score would be less than the gap opening penalty, yielding a 1.5-2X speedup on most comparisons. to skip the calculation of some cells. However, his approach is only good for calculating the minimum edit distance and find out the corresponding subsequences (aka search phase). Bill Pearson's popular dynamic programming alignment program SSEARCH uses Phil Green's algorithm to find the subsequences and then Miller-Myers's algorithm to find the actual alignment. (aka alignment phase) The current implementation supports local alignment of either DNA sequences or protein sequences. It allows you to specify either the Miller-Myers Global Alignment (DPALIGN_GLOBAL_MILLER_MYERS) or Miller-Myers Local Alignment (DPALIGN_LOCAL_MILLER_MYERS). For DNA alignment, you can specify the scores for match, mismatch, gap opening cost and gap extension cost. For protein alignment, it is using BLOSUM62 by default. Currently the substitution matrix is not configurable. Note: If you supply LocatableSeq objects to pairwise_alignment, pairwise_alignment_score, align_and_show or sequence_profile and the sequence supplied contains gaps, these functions will treat these sequences as if they are without gaps. =head1 DEPENDENCIES This package comes with the main bioperl distribution. You also need to install the lastest bioperl-ext package which contains the XS code that implements the algorithms. This package won't work if you haven't compiled the bioperl-ext package. =head1 TO-DO =over 3 =item 1. Basic support for IUPAC code for DNA sequence is now implemented. X will mismatch any character. T will match U. For others, whenever there is a possibility for match, it is considered a full match, for example, W will match B. =item 2. Allow custom substitution matrix for DNA. Note that for proteins, you can now use your own subsitution matirx. =back =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to one of the Bioperl mailing lists. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHOR This implementation was written by Yee Man Chan (ymc@yahoo.com). Copyright (c) 2003 Yee Man Chan. All rights reserved. This program is free software; you can redistribute it and/or modify it under the same terms as Perl itself. Special thanks to Aaron Mackey and WIlliam Pearson for the helpful discussions. [The portion of code inside pgreen subdirectory was borrowed from ssearch. It should be distributed in the same terms as ssearch.] =cut package Bio::Tools::dpAlign; use Bio::SimpleAlign; use base qw(Bio::Tools::AlignFactory); # Gotoh algorithm as defined in J. Mol. Biol. (1982) 162, 705-708 # use constant DSW_GOTOH => 1; # Hirschberg's algorithm as defined in Myers & Miller in # CABIOS, Vol 4, No. 1, 1988, p 11-17 # This algorithm is used in both the search phase and the # alignment phase. use constant DPALIGN_LOCAL_MILLER_MYERS => 1; use constant DPALIGN_GLOBAL_MILLER_MYERS => 2; use constant DPALIGN_ENDSFREE_MILLER_MYERS => 3; # my toy algorithm that tries to do SW as fast as possible # use constant DSW_FSW => 3; # Phil Green's approximation to Smith-Waterman. It avoid calculations # that might result in a score less than the opening gap penalty. # This is the algorithm used by ssearch. Phil Green's algorithm is # used in the search phase while Miller-Myers algorithm is used in # the alignment phase #use constant DPALIGN_LOCAL_GREEN => 2; BEGIN { eval { require Bio::Ext::Align; }; if ( $@ ) { die("\nThe C-compiled engine for Smith Waterman alignments (Align) has not been installed.\n Please read the install the bioperl-ext package\n\n"); exit(1); } } sub new { my ($class, @args) = @_; my $self = $class->SUPER::new(@args); my ($match, $mismatch, $gap, $ext, $alg, $matrix) = $self->_rearrange([qw(MATCH MISMATCH GAP EXT ALG MATRIX )], @args); $self->match(3) unless defined $match; $self->mismatch(-1) unless defined $mismatch; $self->gap(3) unless defined $gap; $self->ext(1) unless defined $ext; $self->alg(DPALIGN_LOCAL_MILLER_MYERS) unless defined $alg; if (defined $match) { if ($match =~ /^\d+$/) { $self->match($match); } else { $self->throw("Match score must be a number, not [$match]"); } } if (defined $mismatch) { if ($match =~ /^\d+$/) { $self->mismatch($mismatch); } else { $self->throw("Mismatch penalty must be a number, not [$mismatch]"); } } if (defined $gap) { if ($gap =~ /^\d+$/) { $self->gap($gap); } else { $self->throw("Gap penalty must be a number, not [$gap]"); } } if (defined $ext) { if ($ext =~ /^\d+$/) { $self->ext($ext); } else { $self->throw("Extension penalty must be a number, not [$ext]"); } } if (defined $alg) { if ($alg == DPALIGN_LOCAL_MILLER_MYERS or $alg == DPALIGN_GLOBAL_MILLER_MYERS or $alg == DPALIGN_ENDSFREE_MILLER_MYERS) { $self->alg($alg); } else { $self->throw("Algorithm must be either 1, 2 or 3"); } } if (defined $matrix and $matrix->isa('Bio::Matrix::MatrixI')) { $self->{'matrix'} = Bio::Ext::Align::ScoringMatrix->new(join("", $matrix->row_names), $self->gap, $self->ext); foreach $rowname ($matrix->row_names) { foreach $colname ($matrix->column_names) { Bio::Ext::Align::ScoringMatrix->set_entry($self->{'matrix'}, $rowname, $colname, $matrix->entry($rowname, $colname)); } } } else { $self->{'matrix'} = 0; } return $self; } =head2 sequence_profile Title : sequence_profile Usage : $prof = $factory->sequence_profile($seq1) Function: Makes a dpAlign_SequenceProfile object from one sequence Returns : A dpAlign_SequenceProfile object Args : The lone argument is a Bio::PrimarySeqI that we want to build a profile for. Usually, this would be the Query sequence =cut sub sequence_profile { my ($self, $seq1) = @_; if( ! defined $seq1 || ! $seq1->isa('Bio::PrimarySeqI')) { $self->warn("Cannot call sequence_profilewithout specifing one sequence (Bio::PrimarySeqI object)"); return; } # fix Jitterbug #1044 if( $seq1->length() < 2) { $self->warn("cannot create sequence profile with length less than 2"); return; } if ($seq1->isa('Bio::LocatableSeq')) { my $seqstr = $seq1->seq; $seqstr =~ s/\-//g; $seq1 = Bio::Seq->new(-id => $seq1->id, -seq => $seqstr, -alphabet => $seq1->alphabet); } # create engine objects $seq1->display_id('seq1') unless ( defined $seq1->id() ); if ($seq1->alphabet eq 'dna') { return Bio::Ext::Align::SequenceProfile->dna_new($seq1->seq, $self->{'match'}, $self->{'mismatch'}, $self->{'gap'}, $self->{'ext'}); } elsif ($seq1->alphabet eq 'protein') { return Bio::Ext::Align::SequenceProfile->protein_new($seq1->seq, $self->{'matrix'}); } else { croak("There is currently no support for the types of sequences you want to align!\n"); return; } } =head2 pairwise_alignment_score Title : pairwise_alignment_score Usage : $score = $factory->pairwise_alignment_score($prof,$seq2) Function: Makes a SimpleAlign object from two sequences Returns : An integer that is the score of the optimal alignment. Args : The first argument is the sequence profile obtained from a call to the sequence_profile function. The second argument is a Bio::PrimarySeqI object to be aligned. The second argument is usually a sequence in the database sequence. Note that this function only uses Phil Green's algorithm and therefore theoretically may not always give you the optimal score. =cut sub pairwise_alignment_score { my ($self, $prof, $seq2) = @_; if( ! defined $prof || ! $prof->isa('Bio::Ext::Align::SequenceProfile') || ! defined $seq2 || ! $seq2->isa('Bio::PrimarySeqI') ) { $self->warn("Cannot call pairwise_alignment_score without specifing 2 sequences (Bio::PrimarySeqI objects)"); return; } # fix Jitterbug #1044 if( $seq2->length() < 2) { $self->warn("cannot align sequences with length less than 2"); return; } if ($seq2->isa('Bio::LocatableSeq')) { my $seqstr = $seq2->seq; $seqstr =~ s/\-//g; $seq2 = Bio::Seq->new(-id => $seq2->id, -seq => $seqstr, -alphabet => $seq2->alphabet); } $self->set_memory_and_report(); # create engine objects $seq2->display_id('seq2') unless ( defined $seq2->id() ); if ($prof->alphabet eq 'dna' and $seq2->alphabet eq 'dna') { return Bio::Ext::Align::Score_DNA_Sequences($prof, $seq2->seq); } elsif ($prof->alphabet eq 'protein' and $seq2->alphabet eq 'protein') { return Bio::Ext::Align::Score_Protein_Sequences($prof, $seq2->seq); } else { croak("There is currently no support for the types of sequences you want to align!\n"); return; } } =head2 pairwise_alignment Title : pairwise_alignment Usage : $aln = $factory->pairwise_alignment($seq1,$seq2) Function: Makes a SimpleAlign object from two sequences Returns : A SimpleAlign object if there is an alignment with positive score. Otherwise, return undef. Args : The first and second arguments are both Bio::PrimarySeqI objects that are to be aligned. =cut sub pairwise_alignment { my ($self, $seq1, $seq2) = @_; my ($aln, $out); if( ! defined $seq1 || ! $seq1->isa('Bio::PrimarySeqI') || ! defined $seq2 || ! $seq2->isa('Bio::PrimarySeqI') ) { $self->warn("Cannot call pairwise_alignment without specifing 2 sequences (Bio::PrimarySeqI objects)"); return; } # fix Jitterbug #1044 if( $seq1->length() < 2 || $seq2->length() < 2 ) { $self->warn("cannot align sequences with length less than 2"); return; } if ($seq1->isa('Bio::LocatableSeq')) { my $seqstr = $seq1->seq; $seqstr =~ s/\-//g; $seq1 = Bio::Seq->new(-id => $seq1->id, -seq => $seqstr, -alphabet => $seq1->alphabet); } if ($seq2->isa('Bio::LocatableSeq')) { my $seqstr = $seq2->seq; $seqstr =~ s/\-//g; $seq2 = Bio::Seq->new(-id => $seq2->id, -seq => $seqstr, -alphabet => $seq2->alphabet); } $self->set_memory_and_report(); # create engine objects $seq1->display_id('seq1') unless ( defined $seq1->id() ); $seq2->display_id('seq2') unless ( defined $seq2->id() ); if ($seq1->alphabet eq 'dna' and $seq2->alphabet eq 'dna') { $aln = Bio::Ext::Align::Align_DNA_Sequences($seq1->seq, $seq2->seq, $self->{'match'}, $self->{'mismatch'}, $self->{'gap'}, $self->{'ext'}, $self->{'alg'}); } elsif ($seq1->alphabet eq 'protein' and $seq2->alphabet eq 'protein') { $aln = Bio::Ext::Align::Align_Protein_Sequences($seq1->seq, $seq2->seq, $self->{'matrix'}, $self->{'alg'}); } else { croak("There is currently no support for the types of sequences you want to align!\n"); return; } if (not defined $aln or $aln == 0) { return; } $out = Bio::SimpleAlign->new(); $out->add_seq(Bio::LocatableSeq->new(-seq => $aln->aln1, -start => $aln->start1, -end => $aln->end1, -id => $seq1->id)); $out->add_seq(Bio::LocatableSeq->new(-seq => $aln->aln2, -start => $aln->start2, -end => $aln->end2, -id => $seq2->id)); $out->score($aln->score); return $out; } =head2 align_and_show Title : align_and_show Usage : $factory->align_and_show($seq1,$seq2,STDOUT) =cut sub align_and_show { my ($self, $seq1, $seq2, $fh) = @_; my ($aln, $out); if (! defined $fh) { $fh = \*STDOUT; } if( ! defined $seq1 || ! $seq1->isa('Bio::PrimarySeqI') || ! defined $seq2 || ! $seq2->isa('Bio::PrimarySeqI') ) { $self->warn("Cannot call pairwise_alignment without specifing 2 sequences (Bio::PrimarySeqI objects)"); return; } # fix Jitterbug #1044 if( $seq1->length() < 2 || $seq2->length() < 2 ) { $self->warn("cannot align sequences with length less than 2"); return; } if ($seq1->isa('Bio::LocatableSeq')) { my $seqstr = $seq1->seq; $seqstr =~ s/\-//g; $seq1 = Bio::Seq->new(-id => $seq1->id, -seq => $seqstr, -alphabet => $seq1->alphabet); } if ($seq2->isa('Bio::LocatableSeq')) { my $seqstr = $seq2->seq; $seqstr =~ s/\-//g; $seq2 = Bio::Seq->new(-id => $seq2->id, -seq => $seqstr, -alphabet => $seq2->alphabet); } $self->set_memory_and_report(); # create engine objects $seq1->display_id('seq1') unless ( defined $seq1->id() ); $seq2->display_id('seq2') unless ( defined $seq2->id() ); if ($seq1->alphabet eq 'dna' and $seq2->alphabet eq 'dna') { $aln = Bio::Ext::Align::Align_DNA_Sequences($seq1->seq, $seq2->seq, $self->{'match'}, $self->{'mismatch'}, $self->{'gap'}, $self->{'ext'}, $self->{'alg'}); } elsif ($seq1->alphabet eq 'protein' and $seq2->alphabet eq 'protein') { $aln = Bio::Ext::Align::Align_Protein_Sequences($seq1->seq, $seq2->seq, $self->{'matrix'}, $self->{'alg'}); } else { croak("There is currently no support for the types of sequences you want to align!\n"); } $out = Bio::Ext::Align::AlnBlock->new(); my $s1 = Bio::Ext::Align::AlnSequence->new(); my $s2 = Bio::Ext::Align::AlnSequence->new(); my $a1 = $aln->aln1; my $a2 = $aln->aln2; my $first_col = undef; my $last_col = undef; my $col; my $alu1; my $alu2; my $g1 = 0; my $g2 = 0; # construct AlnBlock for (my $i = 0; $i < length($a1); ++$i) { $col = Bio::Ext::Align::AlnColumn->new(); $alu1 = Bio::Ext::Align::AlnUnit->new(); $alu2 = Bio::Ext::Align::AlnUnit->new(); $first_col = $col unless defined $first_col; Bio::Ext::Align::AlnColumn::set_next($last_col, $col) if defined $last_col; if (substr($a1, $i, 1) eq "-") { Bio::Ext::Align::AlnUnit::set_text_label($alu1, "INSERT"); Bio::Ext::Align::AlnUnit::set_text_label($alu2, "SEQUENCE"); ++$g1; } elsif (substr($a2, $i, 1) eq "-") { Bio::Ext::Align::AlnUnit::set_text_label($alu1, "SEQUENCE"); Bio::Ext::Align::AlnUnit::set_text_label($alu2, "INSERT"); ++$g2; } else { Bio::Ext::Align::AlnUnit::set_text_label($alu1, "SEQUENCE"); Bio::Ext::Align::AlnUnit::set_text_label($alu2, "SEQUENCE"); } Bio::Ext::Align::AlnUnit::set_start($alu1, $aln->start1+$i-$g1-2); Bio::Ext::Align::AlnUnit::set_end($alu1, $aln->start1+$i-$g1-2); Bio::Ext::Align::AlnUnit::set_start($alu2, $aln->start2+$i-$g2-2); Bio::Ext::Align::AlnUnit::set_end($alu2, $aln->start2+$i-$g2-2); Bio::Ext::Align::AlnColumn::add_alu($col, $alu1); Bio::Ext::Align::AlnColumn::add_alu($col, $alu2); $last_col = $col; } Bio::Ext::Align::AlnBlock::set_start($out, $first_col); $col = Bio::Ext::Align::AlnColumn->new(); $alu1 = Bio::Ext::Align::AlnUnit->new(); $alu2 = Bio::Ext::Align::AlnUnit->new(); Bio::Ext::Align::AlnUnit::set_start($alu1, $aln->end1); Bio::Ext::Align::AlnUnit::set_end($alu1, $aln->end1); Bio::Ext::Align::AlnUnit::set_text_label($alu1, "END"); Bio::Ext::Align::AlnUnit::set_start($alu2, $aln->end2); Bio::Ext::Align::AlnUnit::set_end($alu2, $aln->end2); Bio::Ext::Align::AlnUnit::set_text_label($alu2, "END"); Bio::Ext::Align::AlnColumn::add_alu($col, $alu1); Bio::Ext::Align::AlnColumn::add_alu($col, $alu2); Bio::Ext::Align::AlnColumn::set_next($last_col, $col); &Bio::Ext::Align::write_pretty_str_align($out,$seq1->id,$seq1->seq,$seq2->id,$seq2->seq,12,50,$fh); } =head2 match Title : match Usage : $match = $factory->match() #get : $factory->match($value) #set Function : the set get for the match score Example : Returns : match value Arguments : new value =cut sub match { my ($self,$val) = @_; if( defined $val ) { if( $val < 0 ) { # Fixed so that match==0 is allowed /AE $self->throw("Can't have a match score less than 0"); } $self->{'match'} = $val; } return $self->{'match'}; } =head2 mismatch Title : mismatch Usage : $mismatch = $factory->mismatch() #get : $factory->mismatch($value) #set Function : the set get for the mismatch penalty Example : Returns : mismatch value Arguments : new value =cut sub mismatch { my ($self,$val) = @_; if( defined $val ) { if( $val > 0 ) { # Fixed so that mismatch==0 is allowed /AE $self->throw("Can't have a mismatch penalty greater than 0"); } $self->{'mismatch'} = $val; } return $self->{'mismatch'}; } =head2 gap Title : gap Usage : $gap = $factory->gap() #get : $factory->gap($value) #set Function : the set get for the gap penalty Example : Returns : gap value Arguments : new value =cut sub gap { my ($self,$val) = @_; if( defined $val ) { if( $val < 0 ) { # Fixed so that gap==0 is allowed /AE $self->throw("Can't have a gap penalty less than 0"); } $self->{'gap'} = $val; } return $self->{'gap'}; } =head2 ext Title : ext Usage : $ext = $factory->ext() #get : $factory->ext($value) #set Function : the set get for the ext penalty Example : Returns : ext value Arguments : new value =cut sub ext { my ($self,$val) = @_; if( defined $val ) { if( $val < 0 ) { # Fixed so that ext==0 is allowed /AE $self->throw("Can't have a extension penalty less than 0"); } $self->{'ext'} = $val; } return $self->{'ext'}; } =head2 alg Title : alg Usage : $alg = $factory->alg() #get : $factory->alg($value) #set Function : the set get for the algorithm Example : Returns : alg value Arguments : new value =cut sub alg { my ($self,$val) = @_; if( defined $val ) { if( $val != DPALIGN_LOCAL_MILLER_MYERS and $val != DPALIGN_GLOBAL_MILLER_MYERS and $val != DPALIGN_ENDSFREE_MILLER_MYERS) { $self->throw("Can't have an algorithm that is not 1, 2 or 3"); } $self->{'alg'} = $val; } return $self->{'alg'}; } 1;