# $Id: DistanceFactory.pm 16123 2009-09-17 12:57:27Z cjfields $ # # BioPerl module for Bio::Tree::DistanceFactory # # Please direct questions and support issues to # # Cared for by Jason Stajich # # Copyright Jason Stajich # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tree::DistanceFactory - Construct a tree using distance based methods =head1 SYNOPSIS use Bio::Tree::DistanceFactory; use Bio::AlignIO; use Bio::Align::DNAStatistics; my $tfactory = Bio::Tree::DistanceFactory->new(-method => "NJ"); my $stats = Bio::Align::DNAStatistics->new(); my $alnin = Bio::AlignIO->new(-format => 'clustalw', -file => 'file.aln'); my $aln = $alnin->next_aln; # Of course matrix can come from a different place # like PHYLIP if you prefer, Bio::Matrix::IO should be able # to parse many things my $jcmatrix = $stats->distance(-align => $aln, -method => 'Jukes-Cantor'); my $tree = $tfactory->make_tree($jcmatrix); =head1 DESCRIPTION This is a factory which will construct a phylogenetic tree based on the pairwise sequence distances for a set of sequences. Currently UPGMA (Sokal and Michener 1958) and NJ (Saitou and Nei 1987) tree construction methods are implemented. =head1 REFERENCES Eddy SR, Durbin R, Krogh A, Mitchison G, (1998) "Biological Sequence Analysis", Cambridge Univ Press, Cambridge, UK. Howe K, Bateman A, Durbin R, (2002) "QuickTree: building huge Neighbour-Joining trees of protein sequences." Bioinformatics 18(11):1546-1547. Saitou N and Nei M, (1987) "The neighbor-joining method: a new method for reconstructing phylogenetic trees." Mol Biol Evol 4(4):406-25. =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted the web: http://bugzilla.open-bio.org/ =head1 AUTHOR - Jason Stajich Email jason-at-bioperl.org =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut package Bio::Tree::DistanceFactory; use vars qw($DefaultMethod $Precision); use strict; # some defaults $DefaultMethod = 'UPGMA'; $Precision = 5; use Bio::Tree::Node; use Bio::Tree::Tree; use base qw(Bio::Root::Root); =head2 new Title : new Usage : my $obj = Bio::Tree::DistanceFactory->new(); Function: Builds a new Bio::Tree::DistanceFactory object Returns : an instance of Bio::Tree::DistanceFactory Args : -method => 'NJ' or 'UPGMA' =cut sub new { my($class,@args) = @_; my $self = $class->SUPER::new(@args); my ($method) = $self->_rearrange([qw(METHOD)], @args); $self->method($method || $DefaultMethod); return $self; } =head2 make_tree Title : make_tree Usage : my $tree = $disttreefact->make_tree($matrix); Function: Build a Tree based on a distance matrix Returns : L Args : L object =cut sub make_tree{ my ($self,$matrix) = @_; if( ! defined $matrix || !ref($matrix) || ! $matrix->isa('Bio::Matrix::MatrixI') ) { $self->warn("Need to provide a valid Bio::Matrix::MatrixI object to make_tree"); return; } my $method = uc ($self->method); if( $method =~ /NJ/i ) { return $self->_nj($matrix); } elsif( $method =~ /UPGMA/i ) { return $self->_upgma($matrix); } else { $self->warn("Unknown tree construction method '$method'. Cannot run."); return; } } =head2 _nj Title : _nj Usage : my $tree = $disttreefact->_nj($matrix); Function: Construct a tree based on distance matrix using the Neighbor Joining algorithm (Saitou and Nei, 1987) Implementation based on Kevin Howe's Quicktree implementation and uses his tricks (some based on Bill Bruno's work) to eliminate negative branch lengths Returns : L Args : L object =cut sub _nj { my ($self,$distmat) = @_; # we assume type checking of $aln has already been done # client shouldn't be calling this directly anyways, using the # make_tree method is preferred # so that we can trim the number of digits shown as the branch length my $precisionstr = "%.$Precision"."f"; my @names = $distmat->column_names; my $N = scalar @names; my ($i,$j,$m,@nodes,$mat,@r); my $L = $N; if( $N < 2 ) { $self->warn("Can only perform NJ treebuilding on sets of 2 or more species\n"); return; } elsif( $N == 2 ) { $i = 0; my $d = sprintf($precisionstr, $distmat->get_entry($names[0],$names[1]) / 2); my $root = Bio::Tree::Node->new(); for my $nm ( @names ) { $root->add_Descendents( Bio::Tree::Node->new(-id => $nm, -branch_length => $d)); } return Bio::Tree::Tree(-root => $root); } my $c = 0; for ( $i = 0; $i < $N; $i++ ) { push @nodes, Bio::Tree::Node->new(-id => $names[$i]); my $ri = 0; for( $j = 0; $j < $N; $j++ ) { $mat->[$i][$j] = $distmat->get_entry($names[$i],$names[$j]); $ri += $mat->[$i][$j]; } $r[$i] = $ri / ($L -2); } for( my $nodecount = 0; $nodecount < $N-3; $nodecount++) { my ($mini,$minj,$min); for($i = 0; $i < $N; $i++ ) { next unless defined $nodes[$i]; for( $j = 0; $j < $i; $j++ ) { next unless defined $nodes[$j]; my $dist = $mat->[$i][$j] - ($r[$i] + $r[$j]); if( ! defined $min || $dist <= $min) { ($mini,$minj,$min) = ($i,$j,$dist); } } } my $dij = $mat->[$mini][$minj]; my $dist_i = ($dij + $r[$mini] - $r[$minj]) / 2; my $dist_j = $dij - $dist_i; # deal with negative branch lengths # per code in K.Howe's quicktree if( $dist_i < 0 ) { $dist_i = 0; $dist_j = $dij; $dist_j = 0 if( $dist_j < 0 ); } elsif( $dist_j < 0 ) { $dist_j = 0; $dist_i = $dij; $dist_i = 0 if( $dist_i < 0 ); } $nodes[$mini]->branch_length(sprintf($precisionstr,$dist_i)); $nodes[$minj]->branch_length(sprintf($precisionstr,$dist_j)); my $newnode = Bio::Tree::Node->new(-descendents => [ $nodes[$mini], $nodes[$minj] ]); $nodes[$mini] = $newnode; delete $nodes[$minj]; # update the distance matrix $r[$mini] = 0; my ($dmi,$dmj); for( $m = 0; $m < $N; $m++ ) { next unless defined $nodes[$m]; if( $m != $mini ) { $dmj = $mat->[$m][$minj]; my ($row,$col); ($row,$col) = ($m,$mini); $dmi = $mat->[$row][$col]; # from K.Howe's notes in quicktree # we can actually adjust r[m] here, by using the form: # rm = ((rm * numseqs) - dmi - dmj + dmk) / (numseqs-1) # Note: in Bill Bruno's method for negative branch # elimination, then if either dist_i is positive and # dist_j is 0, or dist_i is zero and dist_j is positive # (after adjustment) then the matrix entry is formed # from the distance to the node in question (m) to the # node with the zero branch length (whichever it was). # I think my code already has the same effect; this is # certainly true if dij is equal to dist_i + dist_j, # which it should have been fixed to my $dmk = $mat->[$row][$col] = $mat->[$col][$row] = ($dmi + $dmj - $dij) / 2; # If we don't want to try and correct negative brlens # this is essentially what is in Edddy et al, BSA book. # $r[$m] = (($r[$m] * $L) - $dmi - $dmj + $dmk) / ($L-1); # $r[$m] = (($r[$m] * ($L - 2)) - $dmi - $dmj + $mat->[$row][$col]) / ( $L - 3); $r[$mini] += $dmk; } } $L--; $r[$mini] /= $L - 2; } # should be 3 nodes left my (@leftovernodes,@leftovers); for( my $k = 0; $k < $N; $k++ ) { if( defined $nodes[$k] ) { push @leftovers, $k; push @leftovernodes, $nodes[$k]; } } my ($l_0,$l_1,$l_2) = @leftovers; my $dist_i = ( $mat->[$l_1][$l_0] + $mat->[$l_2][$l_0] - $mat->[$l_2][$l_1] ) / 2; my $dist_j = ( $mat->[$l_1][$l_0] - $dist_i); my $dist_k = ( $mat->[$l_2][$l_0] - $dist_i); # This is Kev's code to get rid of negative branch lengths if( $dist_i < 0 ) { $dist_i = 0; $dist_j = $mat->[$l_1][$l_0]; $dist_k = $mat->[$l_2][$l_0]; if( $dist_j < 0 ) { $dist_j = 0; $dist_k = ( $mat->[$l_2][$l_0] + $mat->[$l_2][$l_1] ) / 2; $dist_k = 0 if( $dist_k < 0 ); } elsif( $dist_k < 0 ) { $dist_k = 0; $dist_j = ($mat->[$l_1][$l_0] + $mat->[$l_2][$l_1]) / 2; $dist_j = 0 if( $dist_j < 0 ); } } elsif( $dist_j < 0 ) { $dist_j = 0; $dist_i = $mat->[$l_1][$l_0]; $dist_k = $mat->[$l_2][$l_1]; if( $dist_i < 0 ) { $dist_i = 0; $dist_k = ( $mat->[$l_2][$l_0] + $mat->[$l_2][$l_1]) / 2; $dist_k = 0 if( $dist_k < 0 ); } elsif( $dist_k < 0 ) { $dist_k = 0; $dist_i = ( $mat->[$l_1][$l_0] + $mat->[$l_2][$l_0]) / 2; $dist_i = 0 if( $dist_i < 0 ); } } elsif( $dist_k < 0 ) { $dist_k = 0; $dist_i = $mat->[$l_2][$l_0]; $dist_j = $mat->[$l_2][$l_1]; if( $dist_i < 0 ) { $dist_i = 0; $dist_j = ( $mat->[$l_1][$l_0] + $mat->[$l_2][$l_1] ) / 2; $dist_j = 0 if $dist_j < 0; } elsif( $dist_j < 0 ) { $dist_j = 0; $dist_i = ($mat->[$l_1][$l_0] + $mat->[$l_2][$l_0]) / 2; $dist_i = 0 if $dist_i < 0; } } $leftovernodes[0]->branch_length(sprintf($precisionstr,$dist_i)); $leftovernodes[1]->branch_length(sprintf($precisionstr,$dist_j)); $leftovernodes[2]->branch_length(sprintf($precisionstr,$dist_k)); Bio::Tree::Tree->new(-root => Bio::Tree::Node->new (-descendents => \@leftovernodes)); } =head2 _upgma Title : _upgma Usage : my $tree = $disttreefact->_upgma($matrix); Function: Construct a tree based on alignment using UPGMA Returns : L Args : L object =cut sub _upgma{ my ($self,$distmat) = @_; # we assume type checking of $matrix has already been done # client shouldn't be calling this directly anyways, using the # make_tree method is preferred # algorithm, from Eddy, Durbin, Krogh, Mitchison, 1998 # originally by Sokal and Michener 1956 my $precisionstr = "%.$Precision"."f"; my ($i,$j,$x,$y,@dmat,@orig,@nodes); my @names = $distmat->column_names; my $c = 0; my @clusters = map { my $r = { 'id' => $c, 'height' => 0, 'contains' => [$c], }; $c++; $r; } @names; my $K = scalar @clusters; my (@mins,$min); for ( $i = 0; $i < $K; $i++ ) { for( $j = $i+1; $j < $K; $j++ ) { my $d = $distmat->get_entry($names[$i],$names[$j]); # get Min here on first time around, save 1 cycle $dmat[$j][$i] = $dmat[$i][$j] = $d; $orig[$i][$j] = $orig[$j][$i] = $d; if ( ! defined $min || $d <= $min ) { if( defined $min && $min == $d ) { push @mins, [$i,$j]; } else { @mins = [$i,$j]; $min = $d; } } } } # distance between each cluster is avg distance # between pairs of sequences from each cluster while( $K > 1 ) { # fencepost - we already have found the $min # so very first time loop is executed we can skip checking unless( defined $min ) { for($i = 0; $i < $K; $i++ ) { for( $j = $i+1; $j < $K; $j++ ) { my $dij = $dmat[$i][$j]; if( ! defined $min || $dij <= $min) { if( defined $min && $min == $dij ) { push @mins, [$i,$j]; } else { @mins = [ $i,$j ]; $min = $dij; } } } } } # randomly break ties ($x,$y) = @{ $mins[int(rand(scalar @mins))] }; # now we are going to join clusters x and y, make a new cluster my $node = Bio::Tree::Node->new(); my @subids; for my $cid ( $x,$y ) { my $nid = $clusters[$cid]->{'id'}; if( ! defined $nodes[$nid] ) { $nodes[$nid] = Bio::Tree::Node->new(-id => $names[$nid]); } $nodes[$nid]->branch_length (sprintf($precisionstr,$min/2 - $clusters[$cid]->{'height'})); $node->add_Descendent($nodes[$nid]); push @subids, @{ $clusters[$cid]->{'contains'} }; } my $cluster = { 'id' => $c++, 'height' => $min / 2, 'contains' => [@subids], }; $K--; # we are going to drop the last node so go ahead and decrement K $nodes[$cluster->{'id'}] = $node; if ( $y != $K ) { $clusters[$y] = $clusters[$K]; $dmat[$y] = $dmat[$K]; for ( $i = 0; $i < $K; $i++ ) { $dmat[$i][$y] = $dmat[$y][$i]; } } delete $clusters[$K]; $clusters[$x] = $cluster; # now recalculate @dmat for( $i = 0; $i < $K; $i++ ) { if( $i != $x) { $dmat[$i][$x] = $dmat[$x][$i] = &_upgma_distance($clusters[$i],$clusters[$x],\@orig); } else { $dmat[$i][$i] = 0; } } # reset so next loop iteration # we will find minimum distance @mins = (); $min = undef; } Bio::Tree::Tree->new(-root => $nodes[-1]); } # calculate avg distance between clusters - be they # single sequences or the combination of multiple seqences # $cluster_i and $cluster_j are the clusters to operate on # and $distances is a matrix (arrayref of arrayrefs) of pairwise # differences indexed on the sequence ids - # so $distances->[0][1] is the distance between sequences 0 and 1 sub _upgma_distance { my ($cluster_i, $cluster_j, $distances) = @_; my $ilen = scalar @{ $cluster_i->{'contains'} }; my $jlen = scalar @{ $cluster_j->{'contains'} }; my ($d,$count); for( my $i = 0; $i < $ilen; $i++ ) { my $i_id = $cluster_i->{'contains'}->[$i]; for( my $j = 0; $j < $jlen; $j++) { my $j_id = $cluster_j->{'contains'}->[$j]; if( ! defined $distances->[$i_id][$j_id] ) { warn("no value for $i_id $j_id\n"); } else { $d += $distances->[$i_id][$j_id]; } $count++; } } return $d / $count; } =head2 method Title : method Usage : $obj->method($newval) Function: Example : Returns : value of method (a scalar) Args : on set, new value (a scalar or undef, optional) =cut sub method{ my $self = shift; return $self->{'_method'} = shift if @_; return $self->{'_method'}; } =head2 check_additivity Title : check_additivity Usage : if( $distance->check_additivity($matrix) ) { } Function : See if matrix obeys additivity principal Returns : boolean Args : Bio::Matrix::MatrixI References: Based on a Java implementation by Peter Sestoft, sestoft@dina.kvl.dk 1999-12-07 version 0.3 http://www.dina.kvl.dk/~sestoft/bsa.html which in turn is based on algorithms described in R. Durbin, S. Eddy, A. Krogh, G. Mitchison. Biological Sequence Analysis CUP 1998, Chapter 7. =cut sub check_additivity{ my ($self,$matrix) = @_; my @names = $matrix->column_names; my $len = scalar @names; return unless $len >= 4; # look at all sets of 4 for( my $i = 0; $i < $len; $i++ ) { for( my $j = $i+1; $j< $len; $j++) { for( my $k = $j+1; $k < $len; $k ++ ) { for( my $m = $k +1; $m < $len; $m++ ) { my $DijDkm = $matrix->get_entry($names[$i],$names[$j]) + $matrix->get_entry($names[$k],$names[$m]); my $DikDjm = $matrix->get_entry($names[$i],$names[$k]) + $matrix->get_entry($names[$j],$names[$m]); my $DimDjk = $matrix->get_entry($names[$i],$names[$m]) + $matrix->get_entry($names[$j],$names[$k]); if( !( ( $DijDkm == $DikDjm && $DijDkm >= $DimDjk) || ( $DijDkm == $DimDjk && $DijDkm >= $DikDjm) || ( $DikDjm == $DimDjk && $DikDjm >= $DijDkm) )) { return 0; } } } } } return 1; } 1;