# $Id: Statistics.pm 16123 2009-09-17 12:57:27Z cjfields $ # # BioPerl module for Bio::Tree::Statistics # # Please direct questions and support issues to # # Cared for by Jason Stajich # # Copyright Jason Stajich # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tree::Statistics - Calculate certain statistics for a Tree =head1 SYNOPSIS use Bio::Tree::Statistics; =head1 DESCRIPTION This should be where Tree statistics are calculated. It was previously where statistics from a Coalescent simulation. It now contains several methods for calculating L. =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHOR - Jason Stajich Email jason AT bioperl.org =head1 CONTRIBUTORS Heikki Lehvaslaiho, heikki at bioperl dot org =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut # Let the code begin... package Bio::Tree::Statistics; use strict; use base qw(Bio::Root::Root); =head2 new Title : new Usage : my $obj = Bio::Tree::Statistics->new(); Function: Builds a new Bio::Tree::Statistics object Returns : Bio::Tree::Statistics Args : =cut =head2 assess_bootstrap Title : assess_bootstrap Usage : my $tree_with_bs = $stats->assess_bootstrap(\@bs_trees); Function: Calculates the bootstrap for internal nodes based on Returns : L Args : Arrayref of Ls =cut sub assess_bootstrap{ my ($self,$bs_trees,$guide_tree) = @_; my @consensus; # internal nodes are defined by their children my (%lookup,%internal); my $i = 0; for my $tree ( $guide_tree, @$bs_trees ) { # Do this as a top down approach, can probably be # improved by caching internal node states, but not going # to worry about it right now. my @allnodes = $tree->get_nodes; my @internalnodes = grep { ! $_->is_Leaf } @allnodes; for my $node ( @internalnodes ) { my @tips = sort map { $_->id } grep { $_->is_Leaf() } $node->get_all_Descendents; my $id = "(".join(",", @tips).")"; if( $i == 0 ) { $internal{$id} = $node->internal_id; } else { $lookup{$id}++; } } $i++; } my @save; for my $l ( keys %lookup ) { if( defined $internal{$l} ) {#&& $lookup{$l} > $min_seen ) { my $intnode = $guide_tree->find_node(-internal_id => $internal{$l}); $intnode->bootstrap(sprintf("%d",100 * $lookup{$l} / $i)); } } return $guide_tree; } =head2 cherries Example : cherries($tree, $node); Description: Count number of paired leaf nodes in a binary tree Returns : integer Exceptions : Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Commonly used statistics assume a binary tree, but this methods returns a value even for trees with polytomies. =cut sub cherries ($;$) { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $cherries = 0; my @descs = $node->each_Descendent; if ($descs[0]->is_Leaf and $descs[1]->is_Leaf) { if ($descs[3]) { #polytomy at leaf level $cherries = 0; } else { $cherries = 1; } } else { # recurse foreach my $desc (@descs) { $cherries += $self->cherries($tree, $desc); } } return $cherries; } =head2 Tree-Trait statistics The following methods produce desciptors of trait distribution among leaf nodes within the trees. They require that a trait has been set for each leaf node. The tag methods of Bio::Tree::Node are used to store them as key/value pairs. In this way, one tree can store more than one trait. Trees have method add_traits() to set trait values from a file. =head2 fitch Example : fitch($tree, $key, $node); Description: Calculates Parsimony Score (PS) and internal trait values using the Fitch 1971 parsimony algorithm for the subtree a defined by the (internal) node. Node defaults to the root. Returns : true on success Exceptions : leaf nodes have to have the trait defined Args : 1. Bio::Tree::TreeI object 2. trait name string 3. Bio::Tree::NodeI object within the tree, optional Runs first L that calculats parsimony scores and then L that should resolve most of the trait/character state ambiguities. Fitch, W.M., 1971. Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20, 406-416. You can access calculated parsimony values using: $score = $node->->get_tag_values('ps_score'); and the trait value with: $traitvalue = $node->->get_tag_values('ps_trait'); # only the first @traitvalues = $node->->get_tag_values('ps_trait'); Note that there can be more that one trait value, especially for the root node. =cut sub fitch { my $self = shift; my $tree = shift; my $key = shift || $self->throw("Trait name is needed"); my $node = shift || $tree->get_root_node; $self->fitch_up($tree, $key, $node); $self->fitch_down($tree, $node); } =head2 ps Example : ps($tree, $key, $node); Description: Calculates Parsimony Score (PS) from Fitch 1971 parsimony algorithm for the subtree a defined by the (internal) node. Node defaults to the root. Returns : integer, 1< PS < n, where n is number of branches Exceptions : leaf nodes have to have the trait defined Args : 1. Bio::Tree::TreeI object 2. trait name string 3. Bio::Tree::NodeI object within the tree, optional This is the first half of the Fitch algorithm that is enough for calculating the resolved parsimony values. The trait/chararacter states are commonly left in ambiguos state. To resolve them, run L. =cut sub ps { shift->fitch_up(@_) } =head2 fitch_up Example : fitch_up($tree, $key, $node); Description: Calculates Parsimony Score (PS) from the Fitch 1971 parsimony algorithm for the subtree a defined by the (internal) node. Node defaults to the root. Returns : integer, 1< PS < n, where n is number of branches Exceptions : leaf nodes have to have the trait defined Args : 1. Bio::Tree::TreeI object 2. trait name string 3. Bio::Tree::NodeI object within the tree, optional This is a more generic name for L and indicates that it performs the first bottom-up tree traversal that calculates the parsimony score but usually leaves trait/character states ambiguous. If you are interested in internal trait states, running L should resolve most of the ambiguities. =cut sub fitch_up { my $self = shift; my $tree = shift; my $key = shift || $self->throw("Trait name is needed"); my $node = shift || $tree->get_root_node; if ($node->is_Leaf) { $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key") unless $node->has_tag($key); $node->set_tag_value('ps_trait', $node->get_tag_values($key) ); $node->set_tag_value('ps_score', 0 ); return; # end of recursion } foreach my $child ($node->each_Descendent) { $self->fitch_up($tree, $key, $child); } my %intersection; my %union; my $score; foreach my $child ($node->each_Descendent) { foreach my $trait ($child->get_tag_values('ps_trait') ) { $intersection{$trait}++ if $union{$trait}; $union{$trait}++; } $score += $child->get_tag_values('ps_score'); } if (keys %intersection) { $node->set_tag_value('ps_trait', keys %intersection); $node->set_tag_value('ps_score', $score); } else { $node->set_tag_value('ps_trait', keys %union); $node->set_tag_value('ps_score', $score+1); } if ($self->verbose) { print "-- node --------------------------\n"; print "iID: ", $node->internal_id, " (", $node->id, ")\n"; print "Trait: ", join (', ', $node->get_tag_values('ps_trait') ), "\n"; print "length :", scalar($node->get_tag_values('ps_score')) , "\n"; } return scalar $node->get_tag_values('ps_score'); } =head2 fitch_down Example : fitch_down($tree, $node); Description: Runs the second pass from Fitch 1971 parsimony algorithm to resolve ambiguous trait states left by first pass. by the (internal) node. Node defaults to the root. Returns : true Exceptions : dies unless the trait is defined in all nodes Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Before running this method you should have ran L (alias to L ). Note that it is not guarantied that all states are completely resolved. =cut sub fitch_down { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $key = 'ps_trait'; $self->throw ("ERROR: ". $node->internal_id. " needs a value for $key") unless $node->has_tag($key); my $nodev; foreach my $trait ($node->get_tag_values($key) ) { $nodev->{$trait}++; } foreach my $child ($node->each_Descendent) { next if $child->is_Leaf; # end of recursion my $intersection; foreach my $trait ($child->get_tag_values($key) ) { $intersection->{$trait}++ if $nodev->{$trait}; } $self->fitch_down($tree, $child); $child->set_tag_value($key, keys %$intersection); } return 1; # success } =head2 persistence Example : persistence($tree, $node); Description: Calculates the persistence for node in the subtree defined by the (internal) node. Node defaults to the root. Returns : int, number of generations trait value has to remain same Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Persistence is a measure of the stability the trait value has in a tree. It expresses the number of generations the trait value remains the same. All the decendants of the root in the same generation have to share the same value. Depends on Fitch's parsimony score (PS). =cut sub _persistence { my $self = shift; my $tree = shift; my $node = shift; my $value = shift || $self->throw("Value is needed"); my $key = 'ps_trait'; $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI'); return 0 unless $node->get_tag_values($key) eq $value; # wrong value return 1 if $node->is_Leaf; # end of recursion my $persistence = 10000000; # an arbitrarily large number foreach my $child ($node->each_Descendent) { my $pers = $self->_persistence($tree, $child, $value); $persistence = $pers if $pers < $persistence; } return $persistence + 1; } sub persistence { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI'); my $key = 'ps_trait'; my $value = $node->get_tag_values($key); #calculate my $persistence = $self->_persistence($tree, $node, $value); $node->set_tag_value('persistance', $persistence); return $persistence; } =head2 count_subclusters Example : count_clusters($tree, $node); Description: Calculates the number of sub-clusters in the subtree defined by the (internal) node. Node defaults to the root. Returns : int, count Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Depends on Fitch's parsimony score (PS). =cut sub _count_subclusters { my $self = shift; my $tree = shift; my $node = shift; my $value = shift || $self->throw("Value is needed"); my $key = 'ps_trait'; $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key") unless $node->has_tag($key); if ($node->get_tag_values($key) eq $value) { if ($node->get_tag_values('ps_score') == 0) { return 0; } else { my $count = 0; foreach my $child ($node->each_Descendent) { $count += $self->_count_subclusters($tree, $child, $value); } return $count; } } return 1; } sub count_subclusters { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI'); my $key = 'ps_trait'; my $value = $node->get_tag_values($key); return $self->_count_subclusters($tree, $node, $value); } =head2 count_leaves Example : count_leaves($tree, $node); Description: Calculates the number of leaves with same trait value as root in the subtree defined by the (internal) node. Requires an unbroken line of identical trait values. Node defaults to the root. Returns : int, number of leaves with this trait value Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Depends on Fitch's parsimony score (PS). =cut sub _count_leaves { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $value = shift; my $key = 'ps_trait'; $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key") unless $node->has_tag($key); if ($node->get_tag_values($key) eq $value) { #print $node->id, ": ", $node->get_tag_values($key), "\n"; return 1 if $node->is_Leaf; # end of recursion my $count = 0; foreach my $child ($node->each_Descendent) { $count += $self->_count_leaves($tree, $child, $value); } return $count; } return 0; } sub count_leaves { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; $self->throw("Node is needed") unless $node->isa('Bio::Tree::NodeI'); my $key = 'ps_trait'; my $value = $node->get_tag_values($key); return $self->_count_leaves($tree, $node, $value); } =head2 phylotype_length Example : phylotype_length($tree, $node); Description: Sums up the branch lengths within phylotype exluding the subclusters where the trait values are different Returns : float, length Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Depends on Fitch's parsimony score (PS). =cut sub _phylotype_length { my $self = shift; my $tree = shift; my $node = shift; my $value = shift; my $key = 'ps_trait'; $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key") unless $node->has_tag($key); return 0 if $node->get_tag_values($key) ne $value; return $node->branch_length if $node->is_Leaf; # end of recursion my $length = 0; foreach my $child ($node->each_Descendent) { my $sub_len = $self->_phylotype_length($tree, $child, $value); $length += $sub_len; $length += $child->branch_length if not $child->is_Leaf and $sub_len; } return $length; } sub phylotype_length { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $key = 'ps_trait'; my $value = $node->get_tag_values($key); return $self->_phylotype_length($tree, $node, $value); } =head2 sum_of_leaf_distances Example : sum_of_leaf_distances($tree, $node); Description: Sums up the branch lengths from root to leaf exluding the subclusters where the trait values are different Returns : float, length Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Depends on Fitch's parsimony score (PS). =cut sub _sum_of_leaf_distances { my $self = shift; my $tree = shift; my $node = shift; my $value = shift; my $key = 'ps_trait'; $self->throw ("ERROR: ". $node->internal_id. " needs a value for trait $key") unless $node->has_tag($key); return 0 if $node->get_tag_values($key) ne $value; #return $node->branch_length if $node->is_Leaf; # end of recursion return 0 if $node->is_Leaf; # end of recursion my $length = 0; foreach my $child ($node->each_Descendent) { $length += $self->_count_leaves($tree, $child, $value) * $child->branch_length + $self->_sum_of_leaf_distances($tree, $child, $value); } return $length; } sub sum_of_leaf_distances { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $key = 'ps_trait'; my $value = $node->get_tag_values($key); return $self->_sum_of_leaf_distances($tree, $node, $value); } =head2 genetic_diversity Example : genetic_diversity($tree, $node); Description: Diversity is the sum of root to leaf distances within the phylotype normalised by number of leaf nodes Returns : float, value of genetic diversity Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional Depends on Fitch's parsimony score (PS). =cut sub genetic_diversity { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; return $self->sum_of_leaf_distances($tree, $node) / $self->count_leaves($tree, $node); } =head2 statratio Example : statratio($tree, $node); Description: Ratio of the stem length and the genetic diversity of the phylotype L Returns : float, separation score Exceptions : all the nodes need to have the trait defined Args : 1. Bio::Tree::TreeI object 2. Bio::Tree::NodeI object within the tree, optional TStatratio gives a measure of separation and variability within the phylotype. Larger values identify more rapidly evolving and recent phylotypes. Depends on Fitch's parsimony score (PS). =cut sub statratio { my $self = shift; my $tree = shift; my $node = shift || $tree->get_root_node; my $div = $self->genetic_diversity($tree, $node); return 0 if $div == 0; return $node->branch_length / $div; } =head2 ai Example : ai($tree, $key, $node); Description: Calculates the Association Index (AI) of Whang et al. 2001 for the subtree defined by the (internal) node. Node defaults to the root. Returns : real Exceptions : leaf nodes have to have the trait defined Args : 1. Bio::Tree::TreeI object 2. trait name string 3. Bio::Tree::NodeI object within the tree, optional Association index (AI) gives a more fine grained results than PS since the result is a real number. ~0 E= AI. Wang, T.H., Donaldson, Y.K., Brettle, R.P., Bell, J.E., Simmonds, P., 2001. Identification of shared populations of human immunodeficiency Virus Type 1 infecting microglia and tissue macrophages outside the central nervous system. J. Virol. 75 (23), 11686-11699. =cut sub _node_ai { my $self = shift; my $node = shift; my $key = shift; my $traits; my $leaf_count = 0; for my $desc ( $node->get_all_Descendents ) { next unless $desc->is_Leaf; $leaf_count++; $self->throw ("Node ". $desc->id. " needs a value for trait [$key]") unless $desc->has_tag($key); my $trait = $desc->get_tag_values($key); $traits->{$trait}++; } my $most_common = 0; foreach ( keys %$traits) { $most_common = $traits->{$_} if $traits->{$_} > $most_common; } return sprintf "%1.6f", (1 - ($most_common/$leaf_count) ) / (2**($leaf_count-1) ); } sub ai { my $self = shift; my $tree = shift; my $key = shift || $self->throw("Trait name is needed"); my $start_node = shift || $tree->get_root_node; return unless $start_node; my $sum = 0; for my $node ( $start_node->get_all_Descendents ) { next if $node->is_Leaf; $sum += $self->_node_ai($node, $key); } return $sum; } =head2 mc Example : mc($tree, $key, $node); Description: Calculates the Monophyletic Clade (MC) size statistics for the subtree a defined by the (internal) node. Node defaults to the root; Returns : hashref with trait values as keys Exceptions : leaf nodes have to have the trait defined Args : 1. Bio::Tree::TreeI object 2. trait name string 3. Bio::Tree::NodeI object within the tree, optional Monophyletic Clade (MC) size statistics by Salemi at al 2005. It is calculated for each trait value. 1 E= MC E= nx, where nx is the number of tips with value x: pick the internal node with maximim value for number of of tips with only trait x MC was defined by Parker et al 2008. Salemi, M., Lamers, S.L., Yu, S., de Oliveira, T., Fitch, W.M., McGrath, M.S., 2005. Phylodynamic analysis of Human Immunodeficiency Virus Type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J. Virol. 79 (17), 11343-11352. Parker, J., Rambaut A., Pybus O., 2008. Correlating viral phenotypes with phylogeny: Accounting for phylogenetic uncertainty Infection, Genetics and Evolution 8 (2008), 239-246. =cut sub _node_mc { my $self = shift; my $node = shift; my $key = shift; my $traits; my $leaf_count = 0; for my $node2 ( $node->get_all_Descendents ) { next unless $node2->is_Leaf; $leaf_count++; my $trait = $node2->get_tag_values($key); $traits->{$trait}++; } return $traits; } sub mc { my $self = shift; my $tree = shift; my $key = shift || die "Trait name is needed"; my $start_node = shift || $tree->get_root_node; return unless $start_node; my $sum; # hashref, keys are trait values my $keys; # hashref, keys are trait values foreach my $node ( $start_node->get_all_Descendents ) { next if $node->is_Leaf; my $traits = $self->_node_mc($node, $key); if (scalar keys %$traits == 1) { my ($value) = keys %$traits; no warnings; $sum->{$value} = $traits->{$value} if $sum->{$value} < $traits->{$value}; } else { map { $keys->{$_} = 1 } keys %$traits; } } # check for cases where there are no clusters foreach my $value (keys %$keys) { $sum->{$value} = 1 unless defined $sum->{$value}; } return $sum; } 1;