# $Id: TreeFunctionsI.pm 16123 2009-09-17 12:57:27Z cjfields $ # # BioPerl module for Bio::Tree::TreeFunctionsI # # Please direct questions and support issues to # # Cared for by Jason Stajich # # Copyright Jason Stajich # # You may distribute this module under the same terms as perl itself # POD documentation - main docs before the code =head1 NAME Bio::Tree::TreeFunctionsI - Decorated Interface implementing basic Tree exploration methods =head1 SYNOPSIS use Bio::TreeIO; my $in = Bio::TreeIO->new(-format => 'newick', -file => 'tree.tre'); my $tree = $in->next_tree; my @nodes = $tree->find_node('id1'); if( $tree->is_monophyletic(-nodes => \@nodes, -outgroup => $outnode) ){ #... } =head1 DESCRIPTION This interface provides a set of implementated Tree functions which only use the defined methods in the TreeI or NodeI interface. =head1 FEEDBACK =head2 Mailing Lists User feedback is an integral part of the evolution of this and other Bioperl modules. Send your comments and suggestions preferably to the Bioperl mailing list. Your participation is much appreciated. bioperl-l@bioperl.org - General discussion http://bioperl.org/wiki/Mailing_lists - About the mailing lists =head2 Support Please direct usage questions or support issues to the mailing list: I rather than to the module maintainer directly. Many experienced and reponsive experts will be able look at the problem and quickly address it. Please include a thorough description of the problem with code and data examples if at all possible. =head2 Reporting Bugs Report bugs to the Bioperl bug tracking system to help us keep track of the bugs and their resolution. Bug reports can be submitted via the web: http://bugzilla.open-bio.org/ =head1 AUTHOR - Jason Stajich, Aaron Mackey, Justin Reese Email jason-at-bioperl-dot-org Email amackey-at-virginia.edu Email jtr4v-at-virginia.edu =head1 CONTRIBUTORS Sendu Bala, bix@sendu.me.uk Rerooting code was worked on by Daniel Barker d.barker-at-reading.ac.uk Ramiro Barrantes Ramiro.Barrantes-at-uvm.edu =head1 APPENDIX The rest of the documentation details each of the object methods. Internal methods are usually preceded with a _ =cut # Let the code begin... package Bio::Tree::TreeFunctionsI; use strict; use UNIVERSAL qw(isa); use base qw(Bio::Tree::TreeI); =head2 find_node Title : find_node Usage : my @nodes = $self->find_node(-id => 'node1'); Function: returns all nodes that match a specific field, by default this is id, but different branch_length, Returns : List of nodes which matched search Args : text string to search for OR -fieldname => $textstring =cut sub find_node { my ($self,$type,$field) = @_; if( ! defined $type ) { $self->warn("Must request a either a string or field and string when searching"); } # all this work for a '-' named field # is so that we could potentially # expand to other constraints in # different implementations # like 'find all nodes with boostrap < XX' if( ! defined $field ) { # only 1 argument, default to searching by id $field= $type; $type = 'id'; } else { $type =~ s/^-//; } # could actually do this by testing $rootnode->can($type) but # it is possible that a tree is implemeted with different node types # - although it is unlikely that the root node would be richer than the # leaf nodes. Can't handle NHX tags right now my @nodes = grep { $_->can($type) && defined $_->$type() && $_->$type() eq $field } $self->get_nodes(); if ( wantarray) { return @nodes; } else { if( @nodes > 1 ) { $self->warn("More than 1 node found but caller requested scalar, only returning first node"); } return shift @nodes; } } =head2 remove_Node Title : remove_Node Usage : $tree->remove_Node($node) Function: Removes a node from the tree Returns : boolean represent status of success Args : either Bio::Tree::NodeI or string of the node id =cut sub remove_Node { my ($self,$input) = @_; my $node = undef; unless( ref($input) ) { $node = $self->find_node($input); } elsif( ! $input->isa('Bio::Tree::NodeI') ) { $self->warn("Did not provide either a valid Bio::Tree::NodeI object or id to remove_node"); return 0; } else { $node = $input; } if( ! $node->ancestor && $self->get_root_node->internal_id != $node->internal_id) { $self->warn("Node (".$node->to_string . ") has no ancestor, can't remove!"); } else { $node->ancestor->remove_Descendent($node); } } =head2 get_lineage_nodes Title : get_lineage_nodes Usage : my @nodes = $tree->get_lineage_nodes($node); Function: Get the full lineage of a node (all its ancestors, in the order root->most recent ancestor) Returns : list of nodes Args : either Bio::Tree::NodeI or string of the node id =cut sub get_lineage_nodes { my ($self, $input) = @_; my $node; unless (ref $input) { $node = $self->find_node($input); } elsif (! $input->isa('Bio::Tree::NodeI')) { $self->warn("Did not provide either a valid Bio::Tree::NodeI object or id to get_lineage_nodes"); return; } else { $node = $input; } # when dealing with Bio::Taxon objects with databases, the root will always # be the database's root, ignoring this Tree's set root node; prefer the # Tree's idea of root. my $root = $self->get_root_node || ''; my @lineage; while ($node) { $node = $node->ancestor || last; unshift(@lineage, $node); $node eq $root && last; } return @lineage; } =head2 splice Title : splice Usage : $tree->splice(-remove_id => \@ids); Function: Remove all the nodes from a tree that correspond to the supplied args, making all the descendents of a removed node the descendents of the removed node's ancestor. You can ask to explicitly remove certain nodes by using -remove_*, remove them conditionally by using -remove_* in combination with -keep_*, or remove everything except certain nodes by using only -keep_*. Returns : n/a Args : just a list of Bio::Tree::NodeI objects to remove, OR -key => value pairs, where -key has the prefix 'remove' or 'keep', followed by an underscore, followed by a fieldname (like for the method find_node). Value should be a scalar or an array ref of scalars (again, like you might supply to find_node). So (-remove_id => [1, 2]) will remove all nodes from the tree that have an id() of '1' or '2', while (-remove_id => [1, 2], -keep_id => [2]) will remove all nodes with an id() of '1'. (-keep_id => [2]) will remove all nodes unless they have an id() of '2' (note, no -remove_*). -preserve_lengths => 1 : setting this argument will splice out intermediate nodes, preserving the original total length between the ancestor and the descendants of the spliced node. Undef by default. =cut sub splice { my ($self, @args) = @_; $self->throw("Must supply some arguments") unless @args > 0; my $preserve_lengths = 0; my @nodes_to_remove; if (ref($args[0])) { $self->throw("When supplying just a list of Nodes, they must be Bio::Tree::NodeI objects") unless $args[0]->isa('Bio::Tree::NodeI'); @nodes_to_remove = @args; } else { $self->throw("When supplying -key => value pairs, must be an even number of args") unless @args % 2 == 0; my %args = @args; my @keep_nodes; my @remove_nodes; my $remove_all = 1; while (my ($key, $value) = each %args) { my @values = ref($value) ? @{$value} : ($value); if ($key =~ s/remove_//) { $remove_all = 0; foreach my $value (@values) { push(@remove_nodes, $self->find_node($key => $value)); } } elsif ($key =~ s/keep_//) { foreach my $value (@values) { push(@keep_nodes, $self->find_node($key => $value)); } } elsif ($key =~ /preserve/) { $preserve_lengths = $value; } } if ($remove_all) { if (@keep_nodes == 0) { $self->warn("Requested to remove everything except certain nodes, but those nodes were not found; doing nothing instead"); return; } @remove_nodes = $self->get_nodes; } if (@keep_nodes > 0) { my %keep_iids = map { $_->internal_id => 1 } @keep_nodes; foreach my $node (@remove_nodes) { push(@nodes_to_remove, $node) unless exists $keep_iids{$node->internal_id}; } } else { @nodes_to_remove = @remove_nodes; } } # do the splicing #*** the algorithm here hasn't really been thought through and tested much, # will probably need revising my %root_descs; my $reroot = 0; foreach my $node (@nodes_to_remove) { my @descs = $node->each_Descendent; my $ancestor = $node->ancestor; if (! $ancestor && ! $reroot) { # we're going to remove the tree root, so will have to re-root the # tree later $reroot = 1; %root_descs = map { $_->internal_id => $_ } @descs; $node->remove_all_Descendents; next; } if (exists $root_descs{$node->internal_id}) { # well, this one can't be the future root anymore delete $root_descs{$node->internal_id}; # but maybe one of this one's descs will become the root foreach my $desc (@descs) { $root_descs{$desc->internal_id} = $desc; } } # make the ancestor of our descendents our own ancestor, and give us # no ancestor of our own to remove us from the tree foreach my $desc (@descs) { $desc->ancestor($ancestor); $desc->branch_length($desc->branch_length + $node->branch_length) if $preserve_lengths; } $node->ancestor(undef); } if ($reroot) { my @candidates = values %root_descs; $self->throw("After splicing, there was no tree root!") unless @candidates > 0; $self->throw("After splicing, the original root was removed but there are multiple candidates for the new root!") unless @candidates == 1; $self->set_root_node($candidates[0]); # not sure its valid to use the reroot() method } } =head2 get_lca Title : get_lca Usage : get_lca(-nodes => \@nodes ); OR get_lca(@nodes); Function: given two or more nodes, returns the lowest common ancestor (aka most recent common ancestor) Returns : node object or undef if there is no common ancestor Args : -nodes => arrayref of nodes to test, OR just a list of nodes =cut sub get_lca { my ($self, @args) = @_; my ($nodes) = $self->_rearrange([qw(NODES)],@args); my @nodes; if (ref($nodes) eq 'ARRAY') { @nodes = @{$nodes}; } else { @nodes = @args; } @nodes >= 2 or $self->throw("At least 2 nodes are required"); # We must go root->leaf to get the correct answer to lca (in a world where # internal_id might not be uniquely assigned), but leaf->root is more # forgiving (eg. lineages may not all have the same root, or they may have # different numbers of 'minor' taxa inbeteen 'major' ones). # # I use root->leaf so that we can easily do multiple nodes at once - no # matter what taxa are below the lca, the lca and all its ancestors ought to # be identical. my @paths; foreach my $node (@nodes) { unless(ref($node) && $node->isa('Bio::Tree::NodeI')) { $self->throw("Cannot process get_lca() with a non-NodeI object ($node)\n"); } my @path = ($self->get_lineage_nodes($node), $node); push(@paths, \@path); } return unless @paths >= 2; my $lca; LEVEL: while ($paths[0] > 0) { my %node_ids; my $node; foreach my $path (@paths) { $node = shift(@{$path}) || last LEVEL; my $node_id = $node->internal_id; unless (defined $node_id) { $self->warn("One of the lineages had a node with no internal_id, can't calculate the common ancestor"); return; } $node_ids{$node_id}++; } if (keys %node_ids == 1) { $lca = $node; } else { # at this point in the lineage the nodes are different; the previous # loop had the lca last LEVEL; } } # If the tree that we are contains the lca (get_lca could have been called # on an empty tree, since it works with plain Nodes), prefer to return the # node object that belongs to us if ($lca && $self->number_nodes > 0) { my $own_lca = $self->find_node(-internal_id => $lca->internal_id); $lca = $own_lca if $own_lca; } return $lca; } =head2 merge_lineage Title : merge_lineage Usage : merge_lineage($node) Function: Merge a lineage of nodes with this tree. Returns : n/a Args : Bio::Tree::TreeI with only one leaf, OR Bio::Tree::NodeI which has an ancestor For example, if we are the tree $tree: +---B | A | +---C and we want to merge the lineage $other_tree: A---C---D After calling $tree->merge_lineage($other_tree), $tree looks like: +---B | A | +---C---D =cut sub merge_lineage { my ($self, $thing) = @_; $self->throw("Must supply an object reference") unless ref($thing); my ($lineage_tree, $lineage_leaf); if ($thing->isa('Bio::Tree::TreeI')) { my @leaves = $thing->get_leaf_nodes; $self->throw("The supplied Tree can only have one leaf") unless @leaves == 1; $lineage_tree = $thing; $lineage_leaf = shift(@leaves); } elsif ($thing->isa('Bio::Tree::NodeI')) { $self->throw("The supplied Node must have an ancestor") unless $thing->ancestor; $lineage_tree = $self->new(-node => $thing); $lineage_leaf = $thing; } # see if any node in the supplied lineage is in our tree - that will be # our lca and we can merge at the node below my @lineage = ($lineage_leaf, reverse($self->get_lineage_nodes($lineage_leaf))); my $merged = 0; for my $i (0..$#lineage) { my $lca = $self->find_node(-internal_id => $lineage[$i]->internal_id) || next; if ($i == 0) { # the supplied thing to merge is already in the tree, nothing to do return; } # $i is the lca, so the previous node is new to the tree and should # be merged on $lca->add_Descendent($lineage[$i-1]); $merged = 1; last; } $merged || ($self->warn("Couldn't merge the lineage of ".$lineage_leaf->id." with the rest of the tree!\n") && return); } =head2 contract_linear_paths Title : contract_linear_paths Usage : contract_linear_paths() Function: Splices out all nodes in the tree that have an ancestor and only one descendent. Returns : n/a Args : none for normal behaviour, true to dis-regard the ancestor requirment and re-root the tree as necessary For example, if we are the tree $tree: +---E | A---B---C---D | +---F After calling $tree->contract_linear_paths(), $tree looks like: +---E | A---D | +---F Instead, $tree->contract_linear_paths(1) would have given: +---E | D | +---F =cut sub contract_linear_paths { my $self = shift; my $reroot = shift; my @remove; foreach my $node ($self->get_nodes) { if ($node->ancestor && $node->each_Descendent == 1) { push(@remove, $node); } } $self->splice(@remove) if @remove; if ($reroot) { my $root = $self->get_root_node; my @descs = $root->each_Descendent; if (@descs == 1) { my $new_root = shift(@descs); $self->set_root_node($new_root); $new_root->ancestor(undef); } } } =head2 is_binary Example : is_binary(); is_binary($node); Description: Finds if the tree or subtree defined by the internal node is a true binary tree without polytomies Returns : boolean Exceptions : Args : Internal node Bio::Tree::NodeI, optional =cut sub is_binary; sub is_binary { my $self = shift; my $node = shift || $self->get_root_node; my $binary = 1; my @descs = $node->each_Descendent; $binary = 0 unless @descs == 2 or @descs == 0; #print "$binary, ", scalar @descs, "\n"; # recurse foreach my $desc (@descs) { $binary += $self->is_binary($desc) -1; } $binary = 0 if $binary < 0; return $binary; } =head2 force_binary Title : force_binary Usage : force_binary() Function: Forces the tree into a binary tree, splitting branches arbitrarily and creating extra nodes as necessary, such that all nodes have exactly two or zero descendants. Returns : n/a Args : none For example, if we are the tree $tree: +---G | +---F | +---E | A | +---D | +---C | +---B (A has 6 descendants B-G) After calling $tree->force_binary(), $tree looks like: +---X | +---X | | | +---X | +---X | | | | +---G | | | | +---X | | | +---F A | +---E | | | +---X | | | | | +---D | | +---X | | +---C | | +---X | +---B (Where X are artificially created nodes with ids 'artificial_n', where n is an integer making the id unique within the tree) =cut sub force_binary { my $self = shift; my $node = shift || $self->get_root_node; my @descs = $node->each_Descendent; if (@descs > 2) { $self->warn("Node ".($node->can('node_name') ? ($node->node_name || $node->id) : $node->id). " has more than two descendants\n(". join(", ", map { $node->can('node_name') ? ($node->node_name || $node->id) : $node->id } @descs). ")\nWill do an arbitrary balanced split"); my @working = @descs; # create an even set of artifical nodes on which to later hang the descs my $half = @working / 2; $half++ if $half > int($half); $half = int($half); my @artificials; while ($half > 1) { my @this_level; foreach my $top_node (@artificials || $node) { for (1..2) { my $art = $top_node->new(-id => "artificial_".++$self->{_art_num}); $top_node->add_Descendent($art); push(@this_level, $art); } } @artificials = @this_level; $half--; } # attach two descs to each artifical leaf foreach my $art (@artificials) { for (1..2) { my $desc = shift(@working) || $node->new(-id => "artificial_".++$self->{_art_num}); $desc->ancestor($art); } } } elsif (@descs == 1) { # ensure that all nodes have 2 descs $node->add_Descendent($node->new(-id => "artificial_".++$self->{_art_num})); } # recurse foreach my $desc (@descs) { $self->force_binary($desc); } } =head2 simplify_to_leaves_string Title : simplify_to_leaves_string Usage : my $leaves_string = $tree->simplify_to_leaves_string() Function: Creates a simple textual representation of the relationship between leaves in self. It forces the tree to be binary, so the result may not strictly correspond to the tree (if the tree wasn't binary), but will be as close as possible. The tree object is not altered. Only leaf node ids are output, in a newick-like format. Returns : string Args : none =cut sub simplify_to_leaves_string { my $self = shift; # Before contracting and forcing binary we need to clone self, but Clone.pm # clone() seg faults and fails to make the clone, whilst Storable dclone # needs $self->{_root_cleanup_methods} deleted (code ref) and seg faults at # end of script. Let's make our own clone... my $tree = $self->_clone; $tree->contract_linear_paths(1); $tree->force_binary; foreach my $node ($tree->get_nodes) { my $id = $node->id; $id = ($node->is_Leaf && $id !~ /^artificial/) ? $id : ''; $node->id($id); } my %paired; my @data = $self->_simplify_helper($tree->get_root_node, \%paired); return join(',', @data); } # safe tree clone that doesn't seg fault =head2 clone() Title : clone Alias : _clone Usage : $tree_copy = $tree->clone(); $subtree_copy = $tree->clone($internal_node); Function: Safe tree clone that doesn't segfault (of Sendu) Returns : Bio::Tree::Tree object Args : [optional] $start_node, Bio::Tree::Node object =cut sub clone { my ($self, $parent, $parent_clone) = @_; $parent ||= $self->get_root_node; $parent_clone ||= $self->_clone_node($parent); foreach my $node ($parent->each_Descendent()) { my $child = $self->_clone_node($node); $child->ancestor($parent_clone); $self->_clone($node, $child); } $parent->ancestor && return; my $tree = $self->new(-root => $parent_clone); return $tree; } # alias sub _clone { shift->clone(@_) } # safe node clone that doesn't seg fault, but deliberately loses ancestors and # descendents sub _clone_node { my ($self, $node) = @_; my $clone = $node->new; while (my ($key, $val) = each %{$node}) { if ($key eq '_desc' || $key eq '_ancestor') { next; } ${$clone}{$key} = $val; } return $clone; } # tree string generator for simplify_to_leaves_string, based on # Bio::TreeIO::newick::_write_tree_Helper sub _simplify_helper { my ($self, $node, $paired) = @_; return () if (!defined $node); my @data = (); foreach my $node ($node->each_Descendent()) { push(@data, $self->_simplify_helper($node, $paired)); } my $id = $node->id_output || ''; if (@data) { unless (exists ${$paired}{"@data"} || @data == 1) { $data[0] = "(" . $data[0]; $data[-1] .= ")"; ${$paired}{"@data"} = 1; } } elsif ($id) { push(@data, $id); } return @data; } =head2 distance Title : distance Usage : distance(-nodes => \@nodes ) Function: returns the distance between two given nodes Returns : numerical distance Args : -nodes => arrayref of nodes to test =cut sub distance { my ($self,@args) = @_; my ($nodes) = $self->_rearrange([qw(NODES)],@args); if( ! defined $nodes ) { $self->warn("Must supply -nodes parameter to distance() method"); return; } $self->throw("Must provide 2 nodes") unless @{$nodes} == 2; my $lca = $self->get_lca(@{$nodes}); unless($lca) { $self->warn("could not find the lca of supplied nodes; can't find distance either"); return; } my $cumul_dist = 0; my $warned = 0; foreach my $current_node (@{$nodes}) { while (1) { last if $current_node eq $lca; if ($current_node->branch_length) { $cumul_dist += $current_node->branch_length; } elsif (! $warned) { $self->warn("At least some nodes do not have a branch length, the distance returned could be wrong"); $warned = 1; } $current_node = $current_node->ancestor || last; } } return $cumul_dist; } =head2 is_monophyletic Title : is_monophyletic Usage : if( $tree->is_monophyletic(-nodes => \@nodes, -outgroup => $outgroup) Function: Will do a test of monophyly for the nodes specified in comparison to a chosen outgroup Returns : boolean Args : -nodes => arrayref of nodes to test -outgroup => outgroup to serve as a reference =cut sub is_monophyletic{ my ($self,@args) = @_; my ($nodes,$outgroup) = $self->_rearrange([qw(NODES OUTGROUP)],@args); if( ! defined $nodes || ! defined $outgroup ) { $self->warn("Must supply -nodes and -outgroup parameters to the method is_monophyletic"); return; } if( ref($nodes) !~ /ARRAY/i ) { $self->warn("Must provide a valid array reference for -nodes"); } my $clade_root = $self->get_lca(@{$nodes}); unless( defined $clade_root ) { $self->warn("could not find clade root via lca"); return; } my $og_ancestor = $outgroup->ancestor; while( defined ($og_ancestor ) ) { if( $og_ancestor->internal_id == $clade_root->internal_id ) { # monophyly is violated return 0; } $og_ancestor = $og_ancestor->ancestor; } return 1; } =head2 is_paraphyletic Title : is_paraphyletic Usage : if( $tree->is_paraphyletic(-nodes =>\@nodes, -outgroup => $node) ){ } Function: Tests whether or not a given set of nodes are paraphyletic (representing the full clade) given an outgroup Returns : [-1,0,1] , -1 if the group is not monophyletic 0 if the group is not paraphyletic 1 if the group is paraphyletic Args : -nodes => Array of Bio::Tree::NodeI objects which are in the tree -outgroup => a Bio::Tree::NodeI to compare the nodes to =cut sub is_paraphyletic{ my ($self,@args) = @_; my ($nodes,$outgroup) = $self->_rearrange([qw(NODES OUTGROUP)],@args); if( ! defined $nodes || ! defined $outgroup ) { $self->warn("Must suply -nodes and -outgroup parameters to the method is_paraphyletic"); return; } if( ref($nodes) !~ /ARRAY/i ) { $self->warn("Must provide a valid array reference for -nodes"); return; } # Algorithm # Find the lca # Find all the nodes beneath the lca # Test to see that none are missing from the nodes list my %nodehash; foreach my $n ( @$nodes ) { $nodehash{$n->internal_id} = $n; } my $clade_root = $self->get_lca(-nodes => $nodes ); unless( defined $clade_root ) { $self->warn("could not find clade root via lca"); return; } my $og_ancestor = $outgroup->ancestor; # Is this necessary/correct for paraphyly test? while( defined ($og_ancestor ) ) { if( $og_ancestor->internal_id == $clade_root->internal_id ) { # monophyly is violated, could be paraphyletic return -1; } $og_ancestor = $og_ancestor->ancestor; } my $tree = Bio::Tree::Tree->new(-root => $clade_root, -nodelete => 1); foreach my $n ( $tree->get_nodes() ) { next unless $n->is_Leaf(); # if any leaf node is not in the list # then it is part of the clade and so the list # must be paraphyletic return 1 unless ( $nodehash{$n->internal_id} ); } return 0; } =head2 reroot Title : reroot Usage : $tree->reroot($node); Function: Reroots a tree making a new node the root Returns : 1 on success, 0 on failure Args : Bio::Tree::NodeI that is in the tree, but is not the current root =cut sub reroot { my ($self,$new_root) = @_; unless (defined $new_root && $new_root->isa("Bio::Tree::NodeI")) { $self->warn("Must provide a valid Bio::Tree::NodeI when rerooting"); return 0; } my $old_root = $self->get_root_node; if( $new_root == $old_root ) { $self->warn("Node requested for reroot is already the root node!"); return 0; } my $anc = $new_root->ancestor; unless( $anc ) { # this is already the root $self->warn("Node requested for reroot is already the root node!"); return 0; } my $tmp_node = $new_root->create_node_on_branch(-position=>0,-force=>1); # reverse the ancestor & children pointers my $former_anc = $tmp_node->ancestor; my @path_from_oldroot = ($self->get_lineage_nodes($tmp_node), $tmp_node); for (my $i = 0; $i < $#path_from_oldroot; $i++) { my $current = $path_from_oldroot[$i]; my $next = $path_from_oldroot[$i + 1]; $current->remove_Descendent($next); $current->branch_length($next->branch_length); $current->bootstrap($next->bootstrap) if defined $next->bootstrap; $next->remove_tag('B'); $next->add_Descendent($current); } $new_root->add_Descendent($former_anc); $tmp_node->remove_Descendent($former_anc); $tmp_node = undef; $new_root->branch_length(undef); $new_root->remove_tag('B'); $old_root = undef; $self->set_root_node($new_root); return 1; } =head2 reroot_at_midpoint Title : reroot_at_midpoint Usage : $tree->reroot_at_midpoint($node, $new_root_id); Function: Reroots a tree on a new node created halfway between the argument and its ancestor Returns : the new midpoint Bio::Tree::NodeIon success, 0 on failure Args : non-root Bio::Tree::NodeI currently in $tree scalar string, id for new node (optional) =cut sub reroot_at_midpoint { my $self = shift; my $node = shift; my $id = shift; unless (defined $node && $node->isa("Bio::Tree::NodeI")) { $self->warn("Must provide a valid Bio::Tree::NodeI when rerooting"); return 0; } my $midpt = $node->create_node_on_branch(-FRACTION=>0.5); if (defined $id) { $self->warn("ID argument is not a scalar") if (ref $id); $midpt->id($id) if defined($id) && !ref($id); } $self->reroot($midpt); return $midpt; } =head2 findnode_by_id Title : findnode_by_id Usage : my $node = $tree->findnode_by_id($id); Function: Get a node by its id (which should be unique for the tree) Returns : L Args : node id =cut sub findnode_by_id { my $tree = shift; $tree->deprecated("use of findnode_by_id() is deprecated; ". "use find_node() instead"); my $id = shift; my $rootnode = $tree->get_root_node; if ( ($rootnode->id) and ($rootnode->id eq $id) ) { return $rootnode; } # process all the children foreach my $node ( $rootnode->get_Descendents ) { if ( ($node->id) and ($node->id eq $id ) ) { return $node; } } } =head2 move_id_to_bootstrap Title : move_id_to_bootstrap Usage : $tree->move_id_to_bootstrap Function: Move internal IDs to bootstrap slot Returns : undef Args : undef =cut sub move_id_to_bootstrap{ my ($tree) = shift; for my $node ( grep { ! $_->is_Leaf } $tree->get_nodes ) { $node->bootstrap($node->id); $node->id(''); } } =head2 add_traits Example : $key = $stat->add_traits($tree, $trait_file, 3); Description: Add traits to a Bio::Tree:Tree nodes of a tree from a file. Returns : trait name Exceptions : log an error if a node has no value in the file Caller : main() The trait file is a tab-delimied text file and need to have a header line giving names to traits. The first column contains the leaf node ids. Subsequent columns contain different trait value sets. Columns numbering starts from 0. The default trait column is the second (1). The returned hashref has one special key, my_trait_name, that holds the trait name. Single or double quotes are removed. =cut sub _read_trait_file { my $self = shift; my $file = shift; my $column = shift || 1; my $traits; open my $TRAIT, "<", $file or $self->("Can't find file $file: $!\n"); my $first_line = 1; while (<$TRAIT>) { if ($first_line) { $first_line = 0; s/['"]//g; my @line = split; $traits->{'my_trait_name'} = $line[$column]; next; } s/['"]//g; my @line = split; last unless $line[0]; $traits->{$line[0]} = $line[$column]; } return $traits; } sub add_trait { my $self = shift; my $file = shift; my $column = shift; my $traits = $self->_read_trait_file($file, $column); # filename, trait column my $key = $traits->{'my_trait_name'}; #use YAML; print Dump $traits; exit; foreach my $node ($self->get_leaf_nodes) { # strip quotes from the node id $node->id($1) if $node->id =~ /^['"]+(.*)['"]+$/; eval { $node->verbose(2); $node->add_tag_value($key, $traits->{ $node->id } ); }; $self->throw("ERROR: No trait for node [". $node->id. "/". $node->internal_id. "]") if $@; } return $key; } 1;