""" Feature agglomeration. Base classes and functions for performing feature agglomeration. """ # Author: V. Michel, A. Gramfort # License: BSD 3 clause import numpy as np from ..base import TransformerMixin from ..utils import array2d ############################################################################### # Mixin class for feature agglomeration. class AgglomerationTransform(TransformerMixin): """ A class for feature agglomeration via the transform interface """ def transform(self, X, pooling_func=np.mean): """ Transform a new matrix using the built clustering Parameters --------- X : array-like, shape = [n_samples, n_features] A M by N array of M observations in N dimensions or a length M array of M one-dimensional observations. pooling_func : a function that takes an array of shape = [M, N] and return an array of value of size M. Defaut is np.mean """ X = array2d(X) nX = [] if len(self.labels_) != X.shape[1]: raise ValueError("X has a different number of features than " "during fitting.") for l in np.unique(self.labels_): nX.append(pooling_func(X[:, self.labels_ == l], axis=1)) return np.array(nX).T def inverse_transform(self, Xred): """ Inverse the transformation. Return a vector of size nb_features with the values of Xred assigned to each group of features Parameters ---------- Xred : array of size k The values to be assigned to each cluster of samples Returns ------- X : array of size nb_samples A vector of size nb_samples with the values of Xred assigned to each of the cluster of samples. """ if np.size((Xred.shape)) == 1: X = np.zeros([self.labels_.shape[0]]) else: X = np.zeros([Xred.shape[0], self.labels_.shape[0]]) unil = np.unique(self.labels_) for i in range(len(unil)): if np.size((Xred.shape)) == 1: X[self.labels_ == unil[i]] = Xred[i] else: X[:, self.labels_ == unil[i]] = array2d(Xred[:, i]).T return X