"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart # Gael Varoquaux # Fabian Pedregosa # Lars Buitinck # License: BSD import collections from operator import itemgetter import inspect import numpy as np try: Counter = collections.Counter except AttributeError: class Counter(collections.defaultdict): """Partial replacement for Python 2.7 collections.Counter.""" def __init__(self, iterable=(), **kwargs): super(Counter, self).__init__(int, **kwargs) self.update(iterable) def most_common(self): return sorted(self.iteritems(), key=itemgetter(1), reverse=True) def update(self, other): """Adds counts for elements in other""" if isinstance(other, self.__class__): for x, n in other.iteritems(): self[x] += n else: for x in other: self[x] += 1 def lsqr(X, y, tol=1e-3): import scipy.sparse.linalg as sp_linalg from ..utils.extmath import safe_sparse_dot if hasattr(sp_linalg, 'lsqr'): # scipy 0.8 or greater return sp_linalg.lsqr(X, y) else: n_samples, n_features = X.shape if n_samples > n_features: coef, _ = sp_linalg.cg(safe_sparse_dot(X.T, X), safe_sparse_dot(X.T, y), tol=tol) else: coef, _ = sp_linalg.cg(safe_sparse_dot(X, X.T), y, tol=tol) coef = safe_sparse_dot(X.T, coef) residues = y - safe_sparse_dot(X, coef) return coef, None, None, residues def _unique(ar, return_index=False, return_inverse=False): """A replacement for the np.unique that appeared in numpy 1.4. While np.unique existed long before, keyword return_inverse was only added in 1.4. """ try: ar = ar.flatten() except AttributeError: if not return_inverse and not return_index: items = sorted(set(ar)) return np.asarray(items) else: ar = np.asarray(ar).flatten() if ar.size == 0: if return_inverse and return_index: return ar, np.empty(0, np.bool), np.empty(0, np.bool) elif return_inverse or return_index: return ar, np.empty(0, np.bool) else: return ar if return_inverse or return_index: perm = ar.argsort() aux = ar[perm] flag = np.concatenate(([True], aux[1:] != aux[:-1])) if return_inverse: iflag = np.cumsum(flag) - 1 iperm = perm.argsort() if return_index: return aux[flag], perm[flag], iflag[iperm] else: return aux[flag], iflag[iperm] else: return aux[flag], perm[flag] else: ar.sort() flag = np.concatenate(([True], ar[1:] != ar[:-1])) return ar[flag] np_version = [] for x in np.__version__.split('.'): try: np_version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 np_version.append(x) np_version = tuple(np_version) if np_version[:2] < (1, 5): unique = _unique else: unique = np.unique def _bincount(X, weights=None, minlength=None): """Replacing np.bincount in numpy < 1.6 to provide minlength.""" result = np.bincount(X, weights) if len(result) >= minlength: return result out = np.zeros(minlength, np.int) out[:len(result)] = result return out if np_version[:2] < (1, 6): bincount = _bincount else: bincount = np.bincount def _copysign(x1, x2): """Slow replacement for np.copysign, which was introduced in numpy 1.4""" return np.abs(x1) * np.sign(x2) if not hasattr(np, 'copysign'): copysign = _copysign else: copysign = np.copysign def _in1d(ar1, ar2, assume_unique=False): """Replacement for in1d that is provided for numpy >= 1.4""" if not assume_unique: ar1, rev_idx = unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] equal_adj = (sar[1:] == sar[:-1]) flag = np.concatenate((equal_adj, [False])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] if not hasattr(np, 'in1d'): in1d = _in1d else: in1d = np.in1d def qr_economic(A, **kwargs): """Compat function for the QR-decomposition in economic mode Scipy 0.9 changed the keyword econ=True to mode='economic' """ import scipy.linalg # trick: triangular solve has introduced in 0.9 if hasattr(scipy.linalg, 'solve_triangular'): return scipy.linalg.qr(A, mode='economic', **kwargs) else: import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore", DeprecationWarning) return scipy.linalg.qr(A, econ=True, **kwargs) def savemat(file_name, mdict, oned_as="column", **kwargs): """MATLAB-format output routine that is compatible with SciPy 0.7's. 0.7.2 (or .1?) added the oned_as keyword arg with 'column' as the default value. It issues a warning if this is not provided, stating that "This will change to 'row' in future versions." """ import scipy.io try: return scipy.io.savemat(file_name, mdict, oned_as=oned_as, **kwargs) except TypeError: return scipy.io.savemat(file_name, mdict, **kwargs) try: from numpy import count_nonzero except ImportError: def count_nonzero(X): return len(np.flatnonzero(X)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy