""" A collection of utility functions and classes. Many (but not all) from the Python Cookbook -- hence the name cbook """ from __future__ import print_function import datetime import errno from functools import reduce import glob import gzip import io import locale import os import re import subprocess import sys import threading import time import traceback import warnings from weakref import ref, WeakKeyDictionary import numpy as np import numpy.ma as ma if sys.version_info[0] >= 3: import types else: import new # On some systems, locale.getpreferredencoding returns None, # which can break unicode; and the sage project reports that # some systems have incorrect locale specifications, e.g., # an encoding instead of a valid locale name. Another # pathological case that has been reported is an empty string. # On some systems, getpreferredencoding sets the locale, which has # side effects. Passing False eliminates those side effects. if sys.version_info[0] >= 3: def unicode_safe(s): import matplotlib try: preferredencoding = locale.getpreferredencoding( matplotlib.rcParams['axes.formatter.use_locale']).strip() if not preferredencoding: preferredencoding = None except (ValueError, ImportError, AttributeError): preferredencoding = None if isinstance(s, bytes): if preferredencoding is None: return unicode(s) else: # We say "unicode" and not "str" here so it passes through # 2to3 correctly. return unicode(s, preferredencoding) return s else: def unicode_safe(s): import matplotlib try: preferredencoding = locale.getpreferredencoding( matplotlib.rcParams['axes.formatter.use_locale']).strip() if not preferredencoding: preferredencoding = None except (ValueError, ImportError, AttributeError): preferredencoding = None if preferredencoding is None: return unicode(s) else: return unicode(s, preferredencoding) class converter: """ Base class for handling string -> python type with support for missing values """ def __init__(self, missing='Null', missingval=None): self.missing = missing self.missingval = missingval def __call__(self, s): if s == self.missing: return self.missingval return s def is_missing(self, s): return not s.strip() or s == self.missing class tostr(converter): 'convert to string or None' def __init__(self, missing='Null', missingval=''): converter.__init__(self, missing=missing, missingval=missingval) class todatetime(converter): 'convert to a datetime or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.datetime(*tup[:6]) class todate(converter): 'convert to a date or None' def __init__(self, fmt='%Y-%m-%d', missing='Null', missingval=None): 'use a :func:`time.strptime` format string for conversion' converter.__init__(self, missing, missingval) self.fmt = fmt def __call__(self, s): if self.is_missing(s): return self.missingval tup = time.strptime(s, self.fmt) return datetime.date(*tup[:3]) class tofloat(converter): 'convert to a float or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) self.missingval = missingval def __call__(self, s): if self.is_missing(s): return self.missingval return float(s) class toint(converter): 'convert to an int or None' def __init__(self, missing='Null', missingval=None): converter.__init__(self, missing) def __call__(self, s): if self.is_missing(s): return self.missingval return int(s) class _BoundMethodProxy(object): ''' Our own proxy object which enables weak references to bound and unbound methods and arbitrary callables. Pulls information about the function, class, and instance out of a bound method. Stores a weak reference to the instance to support garbage collection. @organization: IBM Corporation @copyright: Copyright (c) 2005, 2006 IBM Corporation @license: The BSD License Minor bugfixes by Michael Droettboom ''' def __init__(self, cb): try: try: self.inst = ref(cb.im_self) except TypeError: self.inst = None self.func = cb.im_func self.klass = cb.im_class except AttributeError: self.inst = None self.func = cb self.klass = None def __getstate__(self): d = self.__dict__.copy() # de-weak reference inst inst = d['inst'] if inst is not None: d['inst'] = inst() return d def __setstate__(self, statedict): self.__dict__ = statedict inst = statedict['inst'] # turn inst back into a weakref if inst is not None: self.inst = ref(inst) def __call__(self, *args, **kwargs): ''' Proxy for a call to the weak referenced object. Take arbitrary params to pass to the callable. Raises `ReferenceError`: When the weak reference refers to a dead object ''' if self.inst is not None and self.inst() is None: raise ReferenceError elif self.inst is not None: # build a new instance method with a strong reference to the # instance if sys.version_info[0] >= 3: mtd = types.MethodType(self.func, self.inst()) else: mtd = new.instancemethod(self.func, self.inst(), self.klass) else: # not a bound method, just return the func mtd = self.func # invoke the callable and return the result return mtd(*args, **kwargs) def __eq__(self, other): ''' Compare the held function and instance with that held by another proxy. ''' try: if self.inst is None: return self.func == other.func and other.inst is None else: return self.func == other.func and self.inst() == other.inst() except Exception: return False def __ne__(self, other): ''' Inverse of __eq__. ''' return not self.__eq__(other) class CallbackRegistry: """ Handle registering and disconnecting for a set of signals and callbacks: >>> def oneat(x): ... print 'eat', x >>> def ondrink(x): ... print 'drink', x >>> from matplotlib.cbook import CallbackRegistry >>> callbacks = CallbackRegistry() >>> id_eat = callbacks.connect('eat', oneat) >>> id_drink = callbacks.connect('drink', ondrink) >>> callbacks.process('drink', 123) drink 123 >>> callbacks.process('eat', 456) eat 456 >>> callbacks.process('be merry', 456) # nothing will be called >>> callbacks.disconnect(id_eat) >>> callbacks.process('eat', 456) # nothing will be called In practice, one should always disconnect all callbacks when they are no longer needed to avoid dangling references (and thus memory leaks). However, real code in matplotlib rarely does so, and due to its design, it is rather difficult to place this kind of code. To get around this, and prevent this class of memory leaks, we instead store weak references to bound methods only, so when the destination object needs to die, the CallbackRegistry won't keep it alive. The Python stdlib weakref module can not create weak references to bound methods directly, so we need to create a proxy object to handle weak references to bound methods (or regular free functions). This technique was shared by Peter Parente on his `"Mindtrove" blog `_. """ def __init__(self, *args): if len(args): warnings.warn( 'CallbackRegistry no longer requires a list of callback types.' ' Ignoring arguments', DeprecationWarning) self.callbacks = dict() self._cid = 0 self._func_cid_map = {} def __getstate__(self): # We cannot currently pickle the callables in the registry, so # return an empty dictionary. return {} def __setstate__(self, state): # re-initialise an empty callback registry self.__init__() def connect(self, s, func): """ register *func* to be called when a signal *s* is generated func will be called """ self._func_cid_map.setdefault(s, WeakKeyDictionary()) if func in self._func_cid_map[s]: return self._func_cid_map[s][func] self._cid += 1 cid = self._cid self._func_cid_map[s][func] = cid self.callbacks.setdefault(s, dict()) proxy = _BoundMethodProxy(func) self.callbacks[s][cid] = proxy return cid def disconnect(self, cid): """ disconnect the callback registered with callback id *cid* """ for eventname, callbackd in self.callbacks.items(): try: del callbackd[cid] except KeyError: continue else: for key, value in self._func_cid_map.items(): if value == cid: del self._func_cid_map[key] return def process(self, s, *args, **kwargs): """ process signal *s*. All of the functions registered to receive callbacks on *s* will be called with *\*args* and *\*\*kwargs* """ if s in self.callbacks: for cid, proxy in self.callbacks[s].items(): # Clean out dead references if proxy.inst is not None and proxy.inst() is None: del self.callbacks[s][cid] else: proxy(*args, **kwargs) class Scheduler(threading.Thread): """ Base class for timeout and idle scheduling """ idlelock = threading.Lock() id = 0 def __init__(self): threading.Thread.__init__(self) self.id = Scheduler.id self._stopped = False Scheduler.id += 1 self._stopevent = threading.Event() def stop(self): if self._stopped: return self._stopevent.set() self.join() self._stopped = True class Timeout(Scheduler): """ Schedule recurring events with a wait time in seconds """ def __init__(self, wait, func): Scheduler.__init__(self) self.wait = wait self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(self.wait) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class Idle(Scheduler): """ Schedule callbacks when scheduler is idle """ # the prototype impl is a bit of a poor man's idle handler. It # just implements a short wait time. But it will provide a # placeholder for a proper impl ater waittime = 0.05 def __init__(self, func): Scheduler.__init__(self) self.func = func def run(self): while not self._stopevent.isSet(): self._stopevent.wait(Idle.waittime) Scheduler.idlelock.acquire() b = self.func(self) Scheduler.idlelock.release() if not b: break class silent_list(list): """ override repr when returning a list of matplotlib artists to prevent long, meaningless output. This is meant to be used for a homogeneous list of a given type """ def __init__(self, type, seq=None): self.type = type if seq is not None: self.extend(seq) def __repr__(self): return '' % (len(self), self.type) def __str__(self): return repr(self) def __getstate__(self): # store a dictionary of this SilentList's state return {'type': self.type, 'seq': self[:]} def __setstate__(self, state): self.type = state['type'] self.extend(state['seq']) def strip_math(s): 'remove latex formatting from mathtext' remove = (r'\mathdefault', r'\rm', r'\cal', r'\tt', r'\it', '\\', '{', '}') s = s[1:-1] for r in remove: s = s.replace(r, '') return s class Bunch: """ Often we want to just collect a bunch of stuff together, naming each item of the bunch; a dictionary's OK for that, but a small do- nothing class is even handier, and prettier to use. Whenever you want to group a few variables:: >>> point = Bunch(datum=2, squared=4, coord=12) >>> point.datum By: Alex Martelli From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52308 """ def __init__(self, **kwds): self.__dict__.update(kwds) def __repr__(self): keys = self.__dict__.iterkeys() return 'Bunch(%s)' % ', '.join(['%s=%s' % (k, self.__dict__[k]) for k in keys]) def unique(x): 'Return a list of unique elements of *x*' return dict([(val, 1) for val in x]).keys() def iterable(obj): 'return true if *obj* is iterable' try: iter(obj) except TypeError: return False return True def is_string_like(obj): 'Return True if *obj* looks like a string' if isinstance(obj, (str, unicode)): return True # numpy strings are subclass of str, ma strings are not if ma.isMaskedArray(obj): if obj.ndim == 0 and obj.dtype.kind in 'SU': return True else: return False try: obj + '' except: return False return True def is_sequence_of_strings(obj): """ Returns true if *obj* is iterable and contains strings """ if not iterable(obj): return False if is_string_like(obj): return False for o in obj: if not is_string_like(o): return False return True def is_writable_file_like(obj): 'return true if *obj* looks like a file object with a *write* method' return hasattr(obj, 'write') and callable(obj.write) def is_scalar(obj): 'return true if *obj* is not string like and is not iterable' return not is_string_like(obj) and not iterable(obj) def is_numlike(obj): 'return true if *obj* looks like a number' try: obj + 1 except: return False else: return True def to_filehandle(fname, flag='rU', return_opened=False): """ *fname* can be a filename or a file handle. Support for gzipped files is automatic, if the filename ends in .gz. *flag* is a read/write flag for :func:`file` """ if is_string_like(fname): if fname.endswith('.gz'): import gzip # get rid of 'U' in flag for gzipped files. flag = flag.replace('U', '') fh = gzip.open(fname, flag) elif fname.endswith('.bz2'): # get rid of 'U' in flag for bz2 files flag = flag.replace('U', '') import bz2 fh = bz2.BZ2File(fname, flag) else: fh = open(fname, flag) opened = True elif hasattr(fname, 'seek'): fh = fname opened = False else: raise ValueError('fname must be a string or file handle') if return_opened: return fh, opened return fh def is_scalar_or_string(val): """Return whether the given object is a scalar or string like.""" return is_string_like(val) or not iterable(val) def get_sample_data(fname, asfileobj=True): """ Return a sample data file. *fname* is a path relative to the `mpl-data/sample_data` directory. If *asfileobj* is `True` return a file object, otherwise just a file path. If the filename ends in .gz, the file is implicitly ungzipped. """ root = os.path.join(os.path.dirname(__file__), "mpl-data", "sample_data") path = os.path.join(root, fname) if asfileobj: if (os.path.splitext(fname)[-1].lower() in ('.csv', '.xrc', '.txt')): mode = 'r' else: mode = 'rb' base, ext = os.path.splitext(fname) if ext == '.gz': return gzip.open(path, mode) else: return open(path, mode) else: return path def flatten(seq, scalarp=is_scalar_or_string): """ Returns a generator of flattened nested containers For example: >>> from matplotlib.cbook import flatten >>> l = (('John', ['Hunter']), (1, 23), [[([42, (5, 23)], )]]) >>> print list(flatten(l)) ['John', 'Hunter', 1, 23, 42, 5, 23] By: Composite of Holger Krekel and Luther Blissett From: http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/121294 and Recipe 1.12 in cookbook """ for item in seq: if scalarp(item): yield item else: for subitem in flatten(item, scalarp): yield subitem class Sorter: """ Sort by attribute or item Example usage:: sort = Sorter() list = [(1, 2), (4, 8), (0, 3)] dict = [{'a': 3, 'b': 4}, {'a': 5, 'b': 2}, {'a': 0, 'b': 0}, {'a': 9, 'b': 9}] sort(list) # default sort sort(list, 1) # sort by index 1 sort(dict, 'a') # sort a list of dicts by key 'a' """ def _helper(self, data, aux, inplace): aux.sort() result = [data[i] for junk, i in aux] if inplace: data[:] = result return result def byItem(self, data, itemindex=None, inplace=1): if itemindex is None: if inplace: data.sort() result = data else: result = data[:] result.sort() return result else: aux = [(data[i][itemindex], i) for i in range(len(data))] return self._helper(data, aux, inplace) def byAttribute(self, data, attributename, inplace=1): aux = [(getattr(data[i], attributename), i) for i in range(len(data))] return self._helper(data, aux, inplace) # a couple of handy synonyms sort = byItem __call__ = byItem class Xlator(dict): """ All-in-one multiple-string-substitution class Example usage:: text = "Larry Wall is the creator of Perl" adict = { "Larry Wall" : "Guido van Rossum", "creator" : "Benevolent Dictator for Life", "Perl" : "Python", } print multiple_replace(adict, text) xlat = Xlator(adict) print xlat.xlat(text) """ def _make_regex(self): """ Build re object based on the keys of the current dictionary """ return re.compile("|".join(map(re.escape, self.iterkeys()))) def __call__(self, match): """ Handler invoked for each regex *match* """ return self[match.group(0)] def xlat(self, text): """ Translate *text*, returns the modified text. """ return self._make_regex().sub(self, text) def soundex(name, len=4): """ soundex module conforming to Odell-Russell algorithm """ # digits holds the soundex values for the alphabet soundex_digits = '01230120022455012623010202' sndx = '' fc = '' # Translate letters in name to soundex digits for c in name.upper(): if c.isalpha(): if not fc: fc = c # Remember first letter d = soundex_digits[ord(c) - ord('A')] # Duplicate consecutive soundex digits are skipped if not sndx or (d != sndx[-1]): sndx += d # Replace first digit with first letter sndx = fc + sndx[1:] # Remove all 0s from the soundex code sndx = sndx.replace('0', '') # Return soundex code truncated or 0-padded to len characters return (sndx + (len * '0'))[:len] class Null: """ Null objects always and reliably "do nothing." """ def __init__(self, *args, **kwargs): pass def __call__(self, *args, **kwargs): return self def __str__(self): return "Null()" def __repr__(self): return "Null()" def __nonzero__(self): return 0 def __getattr__(self, name): return self def __setattr__(self, name, value): return self def __delattr__(self, name): return self def mkdirs(newdir, mode=0o777): """ make directory *newdir* recursively, and set *mode*. Equivalent to :: > mkdir -p NEWDIR > chmod MODE NEWDIR """ try: if not os.path.exists(newdir): parts = os.path.split(newdir) for i in range(1, len(parts) + 1): thispart = os.path.join(*parts[:i]) if not os.path.exists(thispart): os.makedirs(thispart, mode) except OSError as err: # Reraise the error unless it's about an already existing directory if err.errno != errno.EEXIST or not os.path.isdir(newdir): raise class GetRealpathAndStat: def __init__(self): self._cache = {} def __call__(self, path): result = self._cache.get(path) if result is None: realpath = os.path.realpath(path) if sys.platform == 'win32': stat_key = realpath else: stat = os.stat(realpath) stat_key = (stat.st_ino, stat.st_dev) result = realpath, stat_key self._cache[path] = result return result get_realpath_and_stat = GetRealpathAndStat() def dict_delall(d, keys): 'delete all of the *keys* from the :class:`dict` *d*' for key in keys: try: del d[key] except KeyError: pass class RingBuffer: """ class that implements a not-yet-full buffer """ def __init__(self, size_max): self.max = size_max self.data = [] class __Full: """ class that implements a full buffer """ def append(self, x): """ Append an element overwriting the oldest one. """ self.data[self.cur] = x self.cur = (self.cur + 1) % self.max def get(self): """ return list of elements in correct order """ return self.data[self.cur:] + self.data[:self.cur] def append(self, x): """append an element at the end of the buffer""" self.data.append(x) if len(self.data) == self.max: self.cur = 0 # Permanently change self's class from non-full to full self.__class__ = __Full def get(self): """ Return a list of elements from the oldest to the newest. """ return self.data def __get_item__(self, i): return self.data[i % len(self.data)] def get_split_ind(seq, N): """ *seq* is a list of words. Return the index into seq such that:: len(' '.join(seq[:ind])<=N . """ sLen = 0 # todo: use Alex's xrange pattern from the cbook for efficiency for (word, ind) in zip(seq, xrange(len(seq))): sLen += len(word) + 1 # +1 to account for the len(' ') if sLen >= N: return ind return len(seq) def wrap(prefix, text, cols): 'wrap *text* with *prefix* at length *cols*' pad = ' ' * len(prefix.expandtabs()) available = cols - len(pad) seq = text.split(' ') Nseq = len(seq) ind = 0 lines = [] while ind < Nseq: lastInd = ind ind += get_split_ind(seq[ind:], available) lines.append(seq[lastInd:ind]) # add the prefix to the first line, pad with spaces otherwise ret = prefix + ' '.join(lines[0]) + '\n' for line in lines[1:]: ret += pad + ' '.join(line) + '\n' return ret # A regular expression used to determine the amount of space to # remove. It looks for the first sequence of spaces immediately # following the first newline, or at the beginning of the string. _find_dedent_regex = re.compile("(?:(?:\n\r?)|^)( *)\S") # A cache to hold the regexs that actually remove the indent. _dedent_regex = {} def dedent(s): """ Remove excess indentation from docstring *s*. Discards any leading blank lines, then removes up to n whitespace characters from each line, where n is the number of leading whitespace characters in the first line. It differs from textwrap.dedent in its deletion of leading blank lines and its use of the first non-blank line to determine the indentation. It is also faster in most cases. """ # This implementation has a somewhat obtuse use of regular # expressions. However, this function accounted for almost 30% of # matplotlib startup time, so it is worthy of optimization at all # costs. if not s: # includes case of s is None return '' match = _find_dedent_regex.match(s) if match is None: return s # This is the number of spaces to remove from the left-hand side. nshift = match.end(1) - match.start(1) if nshift == 0: return s # Get a regex that will remove *up to* nshift spaces from the # beginning of each line. If it isn't in the cache, generate it. unindent = _dedent_regex.get(nshift, None) if unindent is None: unindent = re.compile("\n\r? {0,%d}" % nshift) _dedent_regex[nshift] = unindent result = unindent.sub("\n", s).strip() return result def listFiles(root, patterns='*', recurse=1, return_folders=0): """ Recursively list files from Parmar and Martelli in the Python Cookbook """ import os.path import fnmatch # Expand patterns from semicolon-separated string to list pattern_list = patterns.split(';') results = [] for dirname, dirs, files in os.walk(root): # Append to results all relevant files (and perhaps folders) for name in files: fullname = os.path.normpath(os.path.join(dirname, name)) if return_folders or os.path.isfile(fullname): for pattern in pattern_list: if fnmatch.fnmatch(name, pattern): results.append(fullname) break # Block recursion if recursion was disallowed if not recurse: break return results def get_recursive_filelist(args): """ Recurse all the files and dirs in *args* ignoring symbolic links and return the files as a list of strings """ files = [] for arg in args: if os.path.isfile(arg): files.append(arg) continue if os.path.isdir(arg): newfiles = listFiles(arg, recurse=1, return_folders=1) files.extend(newfiles) return [f for f in files if not os.path.islink(f)] def pieces(seq, num=2): "Break up the *seq* into *num* tuples" start = 0 while 1: item = seq[start:start + num] if not len(item): break yield item start += num def exception_to_str(s=None): sh = io.StringIO() if s is not None: print(s, file=sh) traceback.print_exc(file=sh) return sh.getvalue() def allequal(seq): """ Return *True* if all elements of *seq* compare equal. If *seq* is 0 or 1 length, return *True* """ if len(seq) < 2: return True val = seq[0] for i in xrange(1, len(seq)): thisval = seq[i] if thisval != val: return False return True def alltrue(seq): """ Return *True* if all elements of *seq* evaluate to *True*. If *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if not val: return False return True def onetrue(seq): """ Return *True* if one element of *seq* is *True*. It *seq* is empty, return *False*. """ if not len(seq): return False for val in seq: if val: return True return False def allpairs(x): """ return all possible pairs in sequence *x* Condensed by Alex Martelli from this thread_ on c.l.python .. _thread: http://groups.google.com/groups?q=all+pairs+group:*python*&hl=en&lr=&ie=UTF-8&selm=mailman.4028.1096403649.5135.python-list%40python.org&rnum=1 """ return [(s, f) for i, f in enumerate(x) for s in x[i + 1:]] class maxdict(dict): """ A dictionary with a maximum size; this doesn't override all the relevant methods to contrain size, just setitem, so use with caution """ def __init__(self, maxsize): dict.__init__(self) self.maxsize = maxsize self._killkeys = [] def __setitem__(self, k, v): if k not in self: if len(self) >= self.maxsize: del self[self._killkeys[0]] del self._killkeys[0] self._killkeys.append(k) dict.__setitem__(self, k, v) class Stack(object): """ Implement a stack where elements can be pushed on and you can move back and forth. But no pop. Should mimic home / back / forward in a browser """ def __init__(self, default=None): self.clear() self._default = default def __call__(self): 'return the current element, or None' if not len(self._elements): return self._default else: return self._elements[self._pos] def __len__(self): return self._elements.__len__() def __getitem__(self, ind): return self._elements.__getitem__(ind) def forward(self): 'move the position forward and return the current element' N = len(self._elements) if self._pos < N - 1: self._pos += 1 return self() def back(self): 'move the position back and return the current element' if self._pos > 0: self._pos -= 1 return self() def push(self, o): """ push object onto stack at current position - all elements occurring later than the current position are discarded """ self._elements = self._elements[:self._pos + 1] self._elements.append(o) self._pos = len(self._elements) - 1 return self() def home(self): 'push the first element onto the top of the stack' if not len(self._elements): return self.push(self._elements[0]) return self() def empty(self): return len(self._elements) == 0 def clear(self): 'empty the stack' self._pos = -1 self._elements = [] def bubble(self, o): """ raise *o* to the top of the stack and return *o*. *o* must be in the stack """ if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() bubbles = [] for thiso in old: if thiso == o: bubbles.append(thiso) else: self.push(thiso) for thiso in bubbles: self.push(o) return o def remove(self, o): 'remove element *o* from the stack' if o not in self._elements: raise ValueError('Unknown element o') old = self._elements[:] self.clear() for thiso in old: if thiso == o: continue else: self.push(thiso) def popall(seq): 'empty a list' for i in xrange(len(seq)): seq.pop() def finddir(o, match, case=False): """ return all attributes of *o* which match string in match. if case is True require an exact case match. """ if case: names = [(name, name) for name in dir(o) if is_string_like(name)] else: names = [(name.lower(), name) for name in dir(o) if is_string_like(name)] match = match.lower() return [orig for name, orig in names if name.find(match) >= 0] def reverse_dict(d): 'reverse the dictionary -- may lose data if values are not unique!' return dict([(v, k) for k, v in d.iteritems()]) def restrict_dict(d, keys): """ Return a dictionary that contains those keys that appear in both d and keys, with values from d. """ return dict([(k, v) for (k, v) in d.iteritems() if k in keys]) def report_memory(i=0): # argument may go away 'return the memory consumed by process' from subprocess import Popen, PIPE pid = os.getpid() if sys.platform == 'sunos5': a2 = Popen('ps -p %d -o osz' % pid, shell=True, stdout=PIPE).stdout.readlines() mem = int(a2[-1].strip()) elif sys.platform.startswith('linux'): a2 = Popen('ps -p %d -o rss,sz' % pid, shell=True, stdout=PIPE).stdout.readlines() mem = int(a2[1].split()[1]) elif sys.platform.startswith('darwin'): a2 = Popen('ps -p %d -o rss,vsz' % pid, shell=True, stdout=PIPE).stdout.readlines() mem = int(a2[1].split()[0]) elif sys.platform.startswith('win'): try: a2 = Popen(["tasklist", "/nh", "/fi", "pid eq %d" % pid], stdout=PIPE).stdout.read() except OSError: raise NotImplementedError( "report_memory works on Windows only if " "the 'tasklist' program is found") mem = int(a2.strip().split()[-2].replace(',', '')) else: raise NotImplementedError( "We don't have a memory monitor for %s" % sys.platform) return mem _safezip_msg = 'In safezip, len(args[0])=%d but len(args[%d])=%d' def safezip(*args): 'make sure *args* are equal len before zipping' Nx = len(args[0]) for i, arg in enumerate(args[1:]): if len(arg) != Nx: raise ValueError(_safezip_msg % (Nx, i + 1, len(arg))) return zip(*args) def issubclass_safe(x, klass): 'return issubclass(x, klass) and return False on a TypeError' try: return issubclass(x, klass) except TypeError: return False def safe_masked_invalid(x): x = np.asanyarray(x) try: xm = np.ma.masked_invalid(x, copy=False) xm.shrink_mask() except TypeError: return x return xm class MemoryMonitor: def __init__(self, nmax=20000): self._nmax = nmax self._mem = np.zeros((self._nmax,), np.int32) self.clear() def clear(self): self._n = 0 self._overflow = False def __call__(self): mem = report_memory() if self._n < self._nmax: self._mem[self._n] = mem self._n += 1 else: self._overflow = True return mem def report(self, segments=4): n = self._n segments = min(n, segments) dn = int(n / segments) ii = range(0, n, dn) ii[-1] = n - 1 print() print('memory report: i, mem, dmem, dmem/nloops') print(0, self._mem[0]) for i in range(1, len(ii)): di = ii[i] - ii[i - 1] if di == 0: continue dm = self._mem[ii[i]] - self._mem[ii[i - 1]] print('%5d %5d %3d %8.3f' % (ii[i], self._mem[ii[i]], dm, dm / float(di))) if self._overflow: print("Warning: array size was too small for the number of calls.") def xy(self, i0=0, isub=1): x = np.arange(i0, self._n, isub) return x, self._mem[i0:self._n:isub] def plot(self, i0=0, isub=1, fig=None): if fig is None: from pylab import figure, show fig = figure() ax = fig.add_subplot(111) ax.plot(*self.xy(i0, isub)) fig.canvas.draw() def print_cycles(objects, outstream=sys.stdout, show_progress=False): """ *objects* A list of objects to find cycles in. It is often useful to pass in gc.garbage to find the cycles that are preventing some objects from being garbage collected. *outstream* The stream for output. *show_progress* If True, print the number of objects reached as they are found. """ import gc from types import FrameType def print_path(path): for i, step in enumerate(path): # next "wraps around" next = path[(i + 1) % len(path)] outstream.write(" %s -- " % str(type(step))) if isinstance(step, dict): for key, val in step.iteritems(): if val is next: outstream.write("[%s]" % repr(key)) break if key is next: outstream.write("[key] = %s" % repr(val)) break elif isinstance(step, list): outstream.write("[%d]" % step.index(next)) elif isinstance(step, tuple): outstream.write("( tuple )") else: outstream.write(repr(step)) outstream.write(" ->\n") outstream.write("\n") def recurse(obj, start, all, current_path): if show_progress: outstream.write("%d\r" % len(all)) all[id(obj)] = None referents = gc.get_referents(obj) for referent in referents: # If we've found our way back to the start, this is # a cycle, so print it out if referent is start: print_path(current_path) # Don't go back through the original list of objects, or # through temporary references to the object, since those # are just an artifact of the cycle detector itself. elif referent is objects or isinstance(referent, FrameType): continue # We haven't seen this object before, so recurse elif id(referent) not in all: recurse(referent, start, all, current_path + [obj]) for obj in objects: outstream.write("Examining: %r\n" % (obj,)) recurse(obj, obj, {}, []) class Grouper(object): """ This class provides a lightweight way to group arbitrary objects together into disjoint sets when a full-blown graph data structure would be overkill. Objects can be joined using :meth:`join`, tested for connectedness using :meth:`joined`, and all disjoint sets can be retreived by using the object as an iterator. The objects being joined must be hashable and weak-referenceable. For example: >>> from matplotlib.cbook import Grouper >>> class Foo(object): ... def __init__(self, s): ... self.s = s ... def __repr__(self): ... return self.s ... >>> a, b, c, d, e, f = [Foo(x) for x in 'abcdef'] >>> grp = Grouper() >>> grp.join(a, b) >>> grp.join(b, c) >>> grp.join(d, e) >>> sorted(map(tuple, grp)) [(d, e), (a, b, c)] >>> grp.joined(a, b) True >>> grp.joined(a, c) True >>> grp.joined(a, d) False """ def __init__(self, init=[]): mapping = self._mapping = {} for x in init: mapping[ref(x)] = [ref(x)] def __contains__(self, item): return ref(item) in self._mapping def clean(self): """ Clean dead weak references from the dictionary """ mapping = self._mapping to_drop = [key for key in mapping if key() is None] for key in to_drop: val = mapping.pop(key) val.remove(key) def join(self, a, *args): """ Join given arguments into the same set. Accepts one or more arguments. """ mapping = self._mapping set_a = mapping.setdefault(ref(a), [ref(a)]) for arg in args: set_b = mapping.get(ref(arg)) if set_b is None: set_a.append(ref(arg)) mapping[ref(arg)] = set_a elif set_b is not set_a: if len(set_b) > len(set_a): set_a, set_b = set_b, set_a set_a.extend(set_b) for elem in set_b: mapping[elem] = set_a self.clean() def joined(self, a, b): """ Returns True if *a* and *b* are members of the same set. """ self.clean() mapping = self._mapping try: return mapping[ref(a)] is mapping[ref(b)] except KeyError: return False def __iter__(self): """ Iterate over each of the disjoint sets as a list. The iterator is invalid if interleaved with calls to join(). """ self.clean() class Token: pass token = Token() # Mark each group as we come across if by appending a token, # and don't yield it twice for group in self._mapping.itervalues(): if not group[-1] is token: yield [x() for x in group] group.append(token) # Cleanup the tokens for group in self._mapping.itervalues(): if group[-1] is token: del group[-1] def get_siblings(self, a): """ Returns all of the items joined with *a*, including itself. """ self.clean() siblings = self._mapping.get(ref(a), [ref(a)]) return [x() for x in siblings] def simple_linear_interpolation(a, steps): if steps == 1: return a steps = np.floor(steps) new_length = ((len(a) - 1) * steps) + 1 new_shape = list(a.shape) new_shape[0] = new_length result = np.zeros(new_shape, a.dtype) result[0] = a[0] a0 = a[0:-1] a1 = a[1:] delta = ((a1 - a0) / steps) for i in range(1, int(steps)): result[i::steps] = delta * i + a0 result[steps::steps] = a1 return result def recursive_remove(path): if os.path.isdir(path): for fname in glob.glob(os.path.join(path, '*')) + \ glob.glob(os.path.join(path, '.*')): if os.path.isdir(fname): recursive_remove(fname) os.removedirs(fname) else: os.remove(fname) #os.removedirs(path) else: os.remove(path) def delete_masked_points(*args): """ Find all masked and/or non-finite points in a set of arguments, and return the arguments with only the unmasked points remaining. Arguments can be in any of 5 categories: 1) 1-D masked arrays 2) 1-D ndarrays 3) ndarrays with more than one dimension 4) other non-string iterables 5) anything else The first argument must be in one of the first four categories; any argument with a length differing from that of the first argument (and hence anything in category 5) then will be passed through unchanged. Masks are obtained from all arguments of the correct length in categories 1, 2, and 4; a point is bad if masked in a masked array or if it is a nan or inf. No attempt is made to extract a mask from categories 2, 3, and 4 if :meth:`np.isfinite` does not yield a Boolean array. All input arguments that are not passed unchanged are returned as ndarrays after removing the points or rows corresponding to masks in any of the arguments. A vastly simpler version of this function was originally written as a helper for Axes.scatter(). """ if not len(args): return () if (is_string_like(args[0]) or not iterable(args[0])): raise ValueError("First argument must be a sequence") nrecs = len(args[0]) margs = [] seqlist = [False] * len(args) for i, x in enumerate(args): if (not is_string_like(x)) and iterable(x) and len(x) == nrecs: seqlist[i] = True if ma.isMA(x): if x.ndim > 1: raise ValueError("Masked arrays must be 1-D") else: x = np.asarray(x) margs.append(x) masks = [] # list of masks that are True where good for i, x in enumerate(margs): if seqlist[i]: if x.ndim > 1: continue # Don't try to get nan locations unless 1-D. if ma.isMA(x): masks.append(~ma.getmaskarray(x)) # invert the mask xd = x.data else: xd = x try: mask = np.isfinite(xd) if isinstance(mask, np.ndarray): masks.append(mask) except: # Fixme: put in tuple of possible exceptions? pass if len(masks): mask = reduce(np.logical_and, masks) igood = mask.nonzero()[0] if len(igood) < nrecs: for i, x in enumerate(margs): if seqlist[i]: margs[i] = x.take(igood, axis=0) for i, x in enumerate(margs): if seqlist[i] and ma.isMA(x): margs[i] = x.filled() return margs def unmasked_index_ranges(mask, compressed=True): ''' Find index ranges where *mask* is *False*. *mask* will be flattened if it is not already 1-D. Returns Nx2 :class:`numpy.ndarray` with each row the start and stop indices for slices of the compressed :class:`numpy.ndarray` corresponding to each of *N* uninterrupted runs of unmasked values. If optional argument *compressed* is *False*, it returns the start and stop indices into the original :class:`numpy.ndarray`, not the compressed :class:`numpy.ndarray`. Returns *None* if there are no unmasked values. Example:: y = ma.array(np.arange(5), mask = [0,0,1,0,0]) ii = unmasked_index_ranges(ma.getmaskarray(y)) # returns array [[0,2,] [2,4,]] y.compressed()[ii[1,0]:ii[1,1]] # returns array [3,4,] ii = unmasked_index_ranges(ma.getmaskarray(y), compressed=False) # returns array [[0, 2], [3, 5]] y.filled()[ii[1,0]:ii[1,1]] # returns array [3,4,] Prior to the transforms refactoring, this was used to support masked arrays in Line2D. ''' mask = mask.reshape(mask.size) m = np.concatenate(((1,), mask, (1,))) indices = np.arange(len(mask) + 1) mdif = m[1:] - m[:-1] i0 = np.compress(mdif == -1, indices) i1 = np.compress(mdif == 1, indices) assert len(i0) == len(i1) if len(i1) == 0: return None # Maybe this should be np.zeros((0,2), dtype=int) if not compressed: return np.concatenate((i0[:, np.newaxis], i1[:, np.newaxis]), axis=1) seglengths = i1 - i0 breakpoints = np.cumsum(seglengths) ic0 = np.concatenate(((0,), breakpoints[:-1])) ic1 = breakpoints return np.concatenate((ic0[:, np.newaxis], ic1[:, np.newaxis]), axis=1) # a dict to cross-map linestyle arguments _linestyles = [('-', 'solid'), ('--', 'dashed'), ('-.', 'dashdot'), (':', 'dotted')] ls_mapper = dict(_linestyles) ls_mapper.update([(ls[1], ls[0]) for ls in _linestyles]) def less_simple_linear_interpolation(x, y, xi, extrap=False): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('less_simple_linear_interpolation has been moved to ' 'matplotlib.mlab -- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.less_simple_linear_interpolation(x, y, xi, extrap=extrap) def vector_lengths(X, P=2.0, axis=None): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('vector_lengths has been moved to matplotlib.mlab -- ' 'please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.vector_lengths(X, P=2.0, axis=axis) def distances_along_curve(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('distances_along_curve has been moved to matplotlib.mlab ' '-- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.distances_along_curve(X) def path_length(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('path_length has been moved to matplotlib.mlab ' '-- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.path_length(X) def is_closed_polygon(X): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('is_closed_polygon has been moved to matplotlib.mlab ' '-- please import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.is_closed_polygon(X) def quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y): """ This function has been moved to matplotlib.mlab -- please import it from there """ # deprecated from cbook in 0.98.4 warnings.warn('quad2cubic has been moved to matplotlib.mlab -- please ' 'import it from there', DeprecationWarning) import matplotlib.mlab as mlab return mlab.quad2cubic(q0x, q0y, q1x, q1y, q2x, q2y) def align_iterators(func, *iterables): """ This generator takes a bunch of iterables that are ordered by func It sends out ordered tuples:: (func(row), [rows from all iterators matching func(row)]) It is used by :func:`matplotlib.mlab.recs_join` to join record arrays """ class myiter: def __init__(self, it): self.it = it self.key = self.value = None self.iternext() def iternext(self): try: self.value = next(self.it) self.key = func(self.value) except StopIteration: self.value = self.key = None def __call__(self, key): retval = None if key == self.key: retval = self.value self.iternext() elif self.key and key > self.key: raise ValueError("Iterator has been left behind") return retval # This can be made more efficient by not computing the minimum key for each # iteration iters = [myiter(it) for it in iterables] minvals = minkey = True while 1: minvals = ([_f for _f in [it.key for it in iters] if _f]) if minvals: minkey = min(minvals) yield (minkey, [it(minkey) for it in iters]) else: break def is_math_text(s): # Did we find an even number of non-escaped dollar signs? # If so, treat is as math text. try: s = unicode(s) except UnicodeDecodeError: raise ValueError( "matplotlib display text must have all code points < 128 or use " "Unicode strings") dollar_count = s.count(r'$') - s.count(r'\$') even_dollars = (dollar_count > 0 and dollar_count % 2 == 0) return even_dollars class _NestedClassGetter(object): # recipe from http://stackoverflow.com/a/11493777/741316 """ When called with the containing class as the first argument, and the name of the nested class as the second argument, returns an instance of the nested class. """ def __call__(self, containing_class, class_name): nested_class = getattr(containing_class, class_name) # make an instance of a simple object (this one will do), for which we # can change the __class__ later on. nested_instance = _NestedClassGetter() # set the class of the instance, the __init__ will never be called on # the class but the original state will be set later on by pickle. nested_instance.__class__ = nested_class return nested_instance class _InstanceMethodPickler(object): """ Pickle cannot handle instancemethod saving. _InstanceMethodPickler provides a solution to this. """ def __init__(self, instancemethod): """Takes an instancemethod as its only argument.""" self.parent_obj = instancemethod.im_self self.instancemethod_name = instancemethod.im_func.__name__ def get_instancemethod(self): return getattr(self.parent_obj, self.instancemethod_name) # Numpy > 1.6.x deprecates putmask in favor of the new copyto. # So long as we support versions 1.6.x and less, we need the # following local version of putmask. We choose to make a # local version of putmask rather than of copyto because the # latter includes more functionality than the former. Therefore # it is easy to make a local version that gives full putmask # behavior, but duplicating the full copyto behavior would be # more difficult. try: np.copyto except AttributeError: _putmask = np.putmask else: def _putmask(a, mask, values): return np.copyto(a, values, where=mask) def _check_output(*popenargs, **kwargs): r"""Run command with arguments and return its output as a byte string. If the exit code was non-zero it raises a CalledProcessError. The CalledProcessError object will have the return code in the returncode attribute and output in the output attribute. The arguments are the same as for the Popen constructor. Example:: >>> check_output(["ls", "-l", "/dev/null"]) 'crw-rw-rw- 1 root root 1, 3 Oct 18 2007 /dev/null\n' The stdout argument is not allowed as it is used internally. To capture standard error in the result, use stderr=STDOUT.:: >>> check_output(["/bin/sh", "-c", ... "ls -l non_existent_file ; exit 0"], ... stderr=STDOUT) 'ls: non_existent_file: No such file or directory\n' """ if 'stdout' in kwargs: raise ValueError('stdout argument not allowed, it will be overridden.') process = subprocess.Popen(stdout=subprocess.PIPE, *popenargs, **kwargs) output, unused_err = process.communicate() retcode = process.poll() if retcode: cmd = kwargs.get("args") if cmd is None: cmd = popenargs[0] raise subprocess.CalledProcessError(retcode, cmd, output=output) return output # python2.7's subprocess provides a check_output method if hasattr(subprocess, 'check_output'): check_output = subprocess.check_output else: check_output = _check_output if __name__ == '__main__': assert(allequal([1, 1, 1])) assert(not allequal([1, 1, 0])) assert(allequal([])) assert(allequal(('a', 'a'))) assert(not allequal(('a', 'b')))