''' Colorbar toolkit with two classes and a function: :class:`ColorbarBase` the base class with full colorbar drawing functionality. It can be used as-is to make a colorbar for a given colormap; a mappable object (e.g., image) is not needed. :class:`Colorbar` the derived class for use with images or contour plots. :func:`make_axes` a function for resizing an axes and adding a second axes suitable for a colorbar The :meth:`~matplotlib.figure.Figure.colorbar` method uses :func:`make_axes` and :class:`Colorbar`; the :func:`~matplotlib.pyplot.colorbar` function is a thin wrapper over :meth:`~matplotlib.figure.Figure.colorbar`. ''' from __future__ import print_function import warnings import numpy as np import matplotlib as mpl import matplotlib.artist as martist import matplotlib.cbook as cbook import matplotlib.collections as collections import matplotlib.colors as colors import matplotlib.contour as contour import matplotlib.cm as cm import matplotlib.gridspec as gridspec import matplotlib.lines as lines import matplotlib.patches as mpatches import matplotlib.path as mpath import matplotlib.ticker as ticker from matplotlib import docstring make_axes_kw_doc = ''' ============= ==================================================== Property Description ============= ==================================================== *orientation* vertical or horizontal *fraction* 0.15; fraction of original axes to use for colorbar *pad* 0.05 if vertical, 0.15 if horizontal; fraction of original axes between colorbar and new image axes *shrink* 1.0; fraction by which to shrink the colorbar *aspect* 20; ratio of long to short dimensions *anchor* (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal; the anchor point of the colorbar axes *panchor* (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal; the anchor point of the colorbar parent axes ============= ==================================================== ''' colormap_kw_doc = ''' ============ ==================================================== Property Description ============ ==================================================== *extend* [ 'neither' | 'both' | 'min' | 'max' ] If not 'neither', make pointed end(s) for out-of- range values. These are set for a given colormap using the colormap set_under and set_over methods. *extendfrac* [ *None* | 'auto' | length | lengths ] If set to *None*, both the minimum and maximum triangular colorbar extensions with have a length of 5% of the interior colorbar length (this is the default setting). If set to 'auto', makes the triangular colorbar extensions the same lengths as the interior boxes (when *spacing* is set to 'uniform') or the same lengths as the respective adjacent interior boxes (when *spacing* is set to 'proportional'). If a scalar, indicates the length of both the minimum and maximum triangular colorbar extensions as a fraction of the interior colorbar length. A two-element sequence of fractions may also be given, indicating the lengths of the minimum and maximum colorbar extensions respectively as a fraction of the interior colorbar length. *spacing* [ 'uniform' | 'proportional' ] Uniform spacing gives each discrete color the same space; proportional makes the space proportional to the data interval. *ticks* [ None | list of ticks | Locator object ] If None, ticks are determined automatically from the input. *format* [ None | format string | Formatter object ] If None, the :class:`~matplotlib.ticker.ScalarFormatter` is used. If a format string is given, e.g. '%.3f', that is used. An alternative :class:`~matplotlib.ticker.Formatter` object may be given instead. *drawedges* [ False | True ] If true, draw lines at color boundaries. ============ ==================================================== The following will probably be useful only in the context of indexed colors (that is, when the mappable has norm=NoNorm()), or other unusual circumstances. ============ =================================================== Property Description ============ =================================================== *boundaries* None or a sequence *values* None or a sequence which must be of length 1 less than the sequence of *boundaries*. For each region delimited by adjacent entries in *boundaries*, the color mapped to the corresponding value in values will be used. ============ =================================================== ''' colorbar_doc = ''' Add a colorbar to a plot. Function signatures for the :mod:`~matplotlib.pyplot` interface; all but the first are also method signatures for the :meth:`~matplotlib.figure.Figure.colorbar` method:: colorbar(**kwargs) colorbar(mappable, **kwargs) colorbar(mappable, cax=cax, **kwargs) colorbar(mappable, ax=ax, **kwargs) arguments: *mappable* the :class:`~matplotlib.image.Image`, :class:`~matplotlib.contour.ContourSet`, etc. to which the colorbar applies; this argument is mandatory for the :meth:`~matplotlib.figure.Figure.colorbar` method but optional for the :func:`~matplotlib.pyplot.colorbar` function, which sets the default to the current image. keyword arguments: *cax* None | axes object into which the colorbar will be drawn *ax* None | parent axes object from which space for a new colorbar axes will be stolen *use_gridspec* False | If *cax* is None, a new *cax* is created as an instance of Axes. If *ax* is an instance of Subplot and *use_gridspec* is True, *cax* is created as an instance of Subplot using the grid_spec module. Additional keyword arguments are of two kinds: axes properties: %s colorbar properties: %s If *mappable* is a :class:`~matplotlib.contours.ContourSet`, its *extend* kwarg is included automatically. Note that the *shrink* kwarg provides a simple way to keep a vertical colorbar, for example, from being taller than the axes of the mappable to which the colorbar is attached; but it is a manual method requiring some trial and error. If the colorbar is too tall (or a horizontal colorbar is too wide) use a smaller value of *shrink*. For more precise control, you can manually specify the positions of the axes objects in which the mappable and the colorbar are drawn. In this case, do not use any of the axes properties kwargs. It is known that some vector graphics viewer (svg and pdf) renders white gaps between segments of the colorbar. This is due to bugs in the viewers not matplotlib. As a workaround the colorbar can be rendered with overlapping segments:: cbar = colorbar() cbar.solids.set_edgecolor("face") draw() However this has negative consequences in other circumstances. Particularly with semi transparent images (alpha < 1) and colorbar extensions and is not enabled by default see (issue #1188). returns: :class:`~matplotlib.colorbar.Colorbar` instance; see also its base class, :class:`~matplotlib.colorbar.ColorbarBase`. Call the :meth:`~matplotlib.colorbar.ColorbarBase.set_label` method to label the colorbar. ''' % (make_axes_kw_doc, colormap_kw_doc) docstring.interpd.update(colorbar_doc=colorbar_doc) def _set_ticks_on_axis_warn(*args, **kw): # a top level function which gets put in at the axes' # set_xticks set_yticks by _patch_ax warnings.warn("Use the colorbar set_ticks() method instead.") class ColorbarBase(cm.ScalarMappable): ''' Draw a colorbar in an existing axes. This is a base class for the :class:`Colorbar` class, which is the basis for the :func:`~matplotlib.pyplot.colorbar` function and the :meth:`~matplotlib.figure.Figure.colorbar` method, which are the usual ways of creating a colorbar. It is also useful by itself for showing a colormap. If the *cmap* kwarg is given but *boundaries* and *values* are left as None, then the colormap will be displayed on a 0-1 scale. To show the under- and over-value colors, specify the *norm* as:: colors.Normalize(clip=False) To show the colors versus index instead of on the 0-1 scale, use:: norm=colors.NoNorm. Useful attributes: :attr:`ax` the Axes instance in which the colorbar is drawn :attr:`lines` a list of LineCollection if lines were drawn, otherwise an empty list :attr:`dividers` a LineCollection if *drawedges* is True, otherwise None Useful public methods are :meth:`set_label` and :meth:`add_lines`. ''' _slice_dict = {'neither': slice(0, None), 'both': slice(1, -1), 'min': slice(1, None), 'max': slice(0, -1)} def __init__(self, ax, cmap=None, norm=None, alpha=None, values=None, boundaries=None, orientation='vertical', extend='neither', spacing='uniform', # uniform or proportional ticks=None, format=None, drawedges=False, filled=True, extendfrac=None, ): self.ax = ax self._patch_ax() if cmap is None: cmap = cm.get_cmap() if norm is None: norm = colors.Normalize() self.alpha = alpha cm.ScalarMappable.__init__(self, cmap=cmap, norm=norm) self.values = values self.boundaries = boundaries self.extend = extend self._inside = self._slice_dict[extend] self.spacing = spacing self.orientation = orientation self.drawedges = drawedges self.filled = filled self.extendfrac = extendfrac self.solids = None self.lines = list() self.outline = None self.patch = None self.dividers = None self.set_label('') if cbook.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks # Handle default in _ticker() if format is None: if isinstance(self.norm, colors.LogNorm): self.formatter = ticker.LogFormatterMathtext() else: self.formatter = ticker.ScalarFormatter() elif cbook.is_string_like(format): self.formatter = ticker.FormatStrFormatter(format) else: self.formatter = format # Assume it is a Formatter # The rest is in a method so we can recalculate when clim changes. self.config_axis() self.draw_all() def _extend_lower(self): """Returns whether the lower limit is open ended.""" return self.extend in ('both', 'min') def _extend_upper(self): """Returns whether the uper limit is open ended.""" return self.extend in ('both', 'max') def _patch_ax(self): # bind some methods to the axes to warn users # against using those methods. self.ax.set_xticks = _set_ticks_on_axis_warn self.ax.set_yticks = _set_ticks_on_axis_warn def draw_all(self): ''' Calculate any free parameters based on the current cmap and norm, and do all the drawing. ''' self._process_values() self._find_range() X, Y = self._mesh() C = self._values[:, np.newaxis] self._config_axes(X, Y) if self.filled: self._add_solids(X, Y, C) def config_axis(self): ax = self.ax if self.orientation == 'vertical': ax.xaxis.set_ticks([]) ax.yaxis.set_label_position('right') ax.yaxis.set_ticks_position('right') else: ax.yaxis.set_ticks([]) ax.xaxis.set_label_position('bottom') self._set_label() def update_ticks(self): """ Force the update of the ticks and ticklabels. This must be called whenever the tick locator and/or tick formatter changes. """ ax = self.ax ticks, ticklabels, offset_string = self._ticker() if self.orientation == 'vertical': ax.yaxis.set_ticks(ticks) ax.set_yticklabels(ticklabels) ax.yaxis.get_major_formatter().set_offset_string(offset_string) else: ax.xaxis.set_ticks(ticks) ax.set_xticklabels(ticklabels) ax.xaxis.get_major_formatter().set_offset_string(offset_string) def set_ticks(self, ticks, update_ticks=True): """ set tick locations. Tick locations are updated immediately unless update_ticks is *False*. To manually update the ticks, call *update_ticks* method explicitly. """ if cbook.iterable(ticks): self.locator = ticker.FixedLocator(ticks, nbins=len(ticks)) else: self.locator = ticks if update_ticks: self.update_ticks() def set_ticklabels(self, ticklabels, update_ticks=True): """ set tick labels. Tick labels are updated immediately unless update_ticks is *False*. To manually update the ticks, call *update_ticks* method explicitly. """ if isinstance(self.locator, ticker.FixedLocator): self.formatter = ticker.FixedFormatter(ticklabels) if update_ticks: self.update_ticks() else: warnings.warn("set_ticks() must have been called.") def _config_axes(self, X, Y): ''' Make an axes patch and outline. ''' ax = self.ax ax.set_frame_on(False) ax.set_navigate(False) xy = self._outline(X, Y) ax.update_datalim(xy) ax.set_xlim(*ax.dataLim.intervalx) ax.set_ylim(*ax.dataLim.intervaly) if self.outline is not None: self.outline.remove() self.outline = lines.Line2D(xy[:, 0], xy[:, 1], color=mpl.rcParams['axes.edgecolor'], linewidth=mpl.rcParams['axes.linewidth']) ax.add_artist(self.outline) self.outline.set_clip_box(None) self.outline.set_clip_path(None) c = mpl.rcParams['axes.facecolor'] if self.patch is not None: self.patch.remove() self.patch = mpatches.Polygon(xy, edgecolor=c, facecolor=c, linewidth=0.01, zorder=-1) ax.add_artist(self.patch) self.update_ticks() def _set_label(self): if self.orientation == 'vertical': self.ax.set_ylabel(self._label, **self._labelkw) else: self.ax.set_xlabel(self._label, **self._labelkw) def set_label(self, label, **kw): ''' Label the long axis of the colorbar ''' self._label = '%s' % (label, ) self._labelkw = kw self._set_label() def _outline(self, X, Y): ''' Return *x*, *y* arrays of colorbar bounding polygon, taking orientation into account. ''' N = X.shape[0] ii = [0, 1, N-2, N-1, 2*N-1, 2*N-2, N+1, N, 0] x = np.take(np.ravel(np.transpose(X)), ii) y = np.take(np.ravel(np.transpose(Y)), ii) x = x.reshape((len(x), 1)) y = y.reshape((len(y), 1)) if self.orientation == 'horizontal': return np.hstack((y, x)) return np.hstack((x, y)) def _edges(self, X, Y): ''' Return the separator line segments; helper for _add_solids. ''' N = X.shape[0] # Using the non-array form of these line segments is much # simpler than making them into arrays. if self.orientation == 'vertical': return [zip(X[i], Y[i]) for i in xrange(1, N-1)] else: return [zip(Y[i], X[i]) for i in xrange(1, N-1)] def _add_solids(self, X, Y, C): ''' Draw the colors using :meth:`~matplotlib.axes.Axes.pcolormesh`; optionally add separators. ''' if self.orientation == 'vertical': args = (X, Y, C) else: args = (np.transpose(Y), np.transpose(X), np.transpose(C)) kw = dict(cmap=self.cmap, norm=self.norm, alpha=self.alpha, edgecolors='None') # Save, set, and restore hold state to keep pcolor from # clearing the axes. Ordinarily this will not be needed, # since the axes object should already have hold set. _hold = self.ax.ishold() self.ax.hold(True) col = self.ax.pcolormesh(*args, **kw) self.ax.hold(_hold) #self.add_observer(col) # We should observe, not be observed... if self.solids is not None: self.solids.remove() self.solids = col if self.dividers is not None: self.dividers.remove() self.dividers = None if self.drawedges: self.dividers = collections.LineCollection(self._edges(X,Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5*mpl.rcParams['axes.linewidth'],) ) self.ax.add_collection(self.dividers) def add_lines(self, levels, colors, linewidths, erase=True): ''' Draw lines on the colorbar. *colors* and *linewidths* must be scalars or sequences the same length as *levels*. Set *erase* to False to add lines without first removing any previously added lines. ''' y = self._locate(levels) nlevs = len(levels) igood = (y < 1.001) & (y > -0.001) y = y[igood] if cbook.iterable(colors): colors = np.asarray(colors)[igood] if cbook.iterable(linewidths): linewidths = np.asarray(linewidths)[igood] N = len(y) x = np.array([0.0, 1.0]) X, Y = np.meshgrid(x,y) if self.orientation == 'vertical': xy = [zip(X[i], Y[i]) for i in xrange(N)] else: xy = [zip(Y[i], X[i]) for i in xrange(N)] col = collections.LineCollection(xy, linewidths=linewidths) if erase and self.lines: for lc in self.lines: lc.remove() self.lines = [] self.lines.append(col) col.set_color(colors) self.ax.add_collection(col) def _ticker(self): ''' Return two sequences: ticks (colorbar data locations) and ticklabels (strings). ''' locator = self.locator formatter = self.formatter if locator is None: if self.boundaries is None: if isinstance(self.norm, colors.NoNorm): nv = len(self._values) base = 1 + int(nv/10) locator = ticker.IndexLocator(base=base, offset=0) elif isinstance(self.norm, colors.BoundaryNorm): b = self.norm.boundaries locator = ticker.FixedLocator(b, nbins=10) elif isinstance(self.norm, colors.LogNorm): locator = ticker.LogLocator() else: locator = ticker.MaxNLocator() else: b = self._boundaries[self._inside] locator = ticker.FixedLocator(b, nbins=10) if isinstance(self.norm, colors.NoNorm): intv = self._values[0], self._values[-1] else: intv = self.vmin, self.vmax locator.create_dummy_axis(minpos=intv[0]) formatter.create_dummy_axis(minpos=intv[0]) locator.set_view_interval(*intv) locator.set_data_interval(*intv) formatter.set_view_interval(*intv) formatter.set_data_interval(*intv) b = np.array(locator()) ticks = self._locate(b) inrange = (ticks > -0.001) & (ticks < 1.001) ticks = ticks[inrange] b = b[inrange] formatter.set_locs(b) ticklabels = [formatter(t, i) for i, t in enumerate(b)] offset_string = formatter.get_offset() return ticks, ticklabels, offset_string def _process_values(self, b=None): ''' Set the :attr:`_boundaries` and :attr:`_values` attributes based on the input boundaries and values. Input boundaries can be *self.boundaries* or the argument *b*. ''' if b is None: b = self.boundaries if b is not None: self._boundaries = np.asarray(b, dtype=float) if self.values is None: self._values = 0.5*(self._boundaries[:-1] + self._boundaries[1:]) if isinstance(self.norm, colors.NoNorm): self._values = (self._values + 0.00001).astype(np.int16) return self._values = np.array(self.values) return if self.values is not None: self._values = np.array(self.values) if self.boundaries is None: b = np.zeros(len(self.values)+1, 'd') b[1:-1] = 0.5*(self._values[:-1] - self._values[1:]) b[0] = 2.0*b[1] - b[2] b[-1] = 2.0*b[-2] - b[-3] self._boundaries = b return self._boundaries = np.array(self.boundaries) return # Neither boundaries nor values are specified; # make reasonable ones based on cmap and norm. if isinstance(self.norm, colors.NoNorm): b = self._uniform_y(self.cmap.N+1) * self.cmap.N - 0.5 v = np.zeros((len(b)-1,), dtype=np.int16) v[self._inside] = np.arange(self.cmap.N, dtype=np.int16) if self._extend_lower(): v[0] = -1 if self._extend_upper(): v[-1] = self.cmap.N self._boundaries = b self._values = v return elif isinstance(self.norm, colors.BoundaryNorm): b = list(self.norm.boundaries) if self._extend_lower(): b = [b[0]-1] + b if self._extend_upper(): b = b + [b[-1] + 1] b = np.array(b) v = np.zeros((len(b)-1,), dtype=float) bi = self.norm.boundaries v[self._inside] = 0.5*(bi[:-1] + bi[1:]) if self._extend_lower(): v[0] = b[0] - 1 if self._extend_upper(): v[-1] = b[-1] + 1 self._boundaries = b self._values = v return else: if not self.norm.scaled(): self.norm.vmin = 0 self.norm.vmax = 1 b = self.norm.inverse(self._uniform_y(self.cmap.N+1)) if self._extend_lower(): b[0] = b[0] - 1 if self._extend_upper(): b[-1] = b[-1] + 1 self._process_values(b) def _find_range(self): ''' Set :attr:`vmin` and :attr:`vmax` attributes to the first and last boundary excluding extended end boundaries. ''' b = self._boundaries[self._inside] self.vmin = b[0] self.vmax = b[-1] def _central_N(self): '''number of boundaries **before** extension of ends''' nb = len(self._boundaries) if self.extend == 'both': nb -= 2 elif self.extend in ('min', 'max'): nb -= 1 return nb def _extended_N(self): ''' Based on the colormap and extend variable, return the number of boundaries. ''' N = self.cmap.N + 1 if self.extend == 'both': N += 2 elif self.extend in ('min', 'max'): N += 1 return N def _get_extension_lengths(self, frac, automin, automax, default=0.05): ''' Get the lengths of colorbar extensions. A helper method for _uniform_y and _proportional_y. ''' # Set the default value. extendlength = np.array([default, default]) if isinstance(frac, str): if frac.lower() == 'auto': # Use the provided values when 'auto' is required. extendlength[0] = automin extendlength[1] = automax else: # Any other string is invalid. raise ValueError('invalid value for extendfrac') elif frac is not None: try: # Try to set min and max extension fractions directly. extendlength[:] = frac # If frac is a sequence contaning None then NaN may # be encountered. This is an error. if np.isnan(extendlength).any(): raise ValueError() except (TypeError, ValueError): # Raise an error on encountering an invalid value for frac. raise ValueError('invalid value for extendfrac') return extendlength def _uniform_y(self, N): ''' Return colorbar data coordinates for *N* uniformly spaced boundaries, plus ends if required. ''' if self.extend == 'neither': y = np.linspace(0, 1, N) else: automin = automax = 1. / (N - 1.) extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend == 'both': y = np.zeros(N + 2, 'd') y[0] = 0. - extendlength[0] y[-1] = 1. + extendlength[1] elif self.extend == 'min': y = np.zeros(N + 1, 'd') y[0] = 0. - extendlength[0] else: y = np.zeros(N + 1, 'd') y[-1] = 1. + extendlength[1] y[self._inside] = np.linspace(0, 1, N) return y def _proportional_y(self): ''' Return colorbar data coordinates for the boundaries of a proportional colorbar. ''' if isinstance(self.norm, colors.BoundaryNorm): b = self._boundaries[self._inside] y = (self._boundaries - self._boundaries[0]) y = y / (self._boundaries[-1] - self._boundaries[0]) else: y = self.norm(self._boundaries.copy()) if self.extend == 'min': # Exclude leftmost interval of y. clen = y[-1] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-1] - y[-2]) / clen elif self.extend == 'max': # Exclude rightmost interval in y. clen = y[-2] - y[0] automin = (y[1] - y[0]) / clen automax = (y[-2] - y[-3]) / clen else: # Exclude leftmost and rightmost intervals in y. clen = y[-2] - y[1] automin = (y[2] - y[1]) / clen automax = (y[-2] - y[-3]) / clen extendlength = self._get_extension_lengths(self.extendfrac, automin, automax, default=0.05) if self.extend in ('both', 'min'): y[0] = 0. - extendlength[0] if self.extend in ('both', 'max'): y[-1] = 1. + extendlength[1] yi = y[self._inside] norm = colors.Normalize(yi[0], yi[-1]) y[self._inside] = norm(yi) return y def _mesh(self): ''' Return X,Y, the coordinate arrays for the colorbar pcolormesh. These are suitable for a vertical colorbar; swapping and transposition for a horizontal colorbar are done outside this function. ''' x = np.array([0.0, 1.0]) if self.spacing == 'uniform': y = self._uniform_y(self._central_N()) else: y = self._proportional_y() self._y = y X, Y = np.meshgrid(x,y) if self._extend_lower(): X[0, :] = 0.5 if self._extend_upper(): X[-1, :] = 0.5 return X, Y def _locate(self, x): ''' Given a set of color data values, return their corresponding colorbar data coordinates. ''' if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)): b = self._boundaries xn = x else: # Do calculations using normalized coordinates so # as to make the interpolation more accurate. b = self.norm(self._boundaries, clip=False).filled() xn = self.norm(x, clip=False).filled() # The rest is linear interpolation with extrapolation at ends. y = self._y N = len(b) ii = np.searchsorted(b, xn) i0 = ii - 1 itop = (ii == N) ibot = (ii == 0) i0[itop] -= 1 ii[itop] -= 1 i0[ibot] += 1 ii[ibot] += 1 #db = b[ii] - b[i0] db = np.take(b, ii) - np.take(b, i0) #dy = y[ii] - y[i0] dy = np.take(y, ii) - np.take(y, i0) z = np.take(y, i0) + (xn-np.take(b,i0))*dy/db return z def set_alpha(self, alpha): self.alpha = alpha class Colorbar(ColorbarBase): """ This class connects a :class:`ColorbarBase` to a :class:`~matplotlib.cm.ScalarMappable` such as a :class:`~matplotlib.image.AxesImage` generated via :meth:`~matplotlib.axes.Axes.imshow`. It is not intended to be instantiated directly; instead, use :meth:`~matplotlib.figure.Figure.colorbar` or :func:`~matplotlib.pyplot.colorbar` to make your colorbar. """ def __init__(self, ax, mappable, **kw): mappable.autoscale_None() # Ensure mappable.norm.vmin, vmax # are set when colorbar is called, # even if mappable.draw has not yet # been called. This will not change # vmin, vmax if they are already set. self.mappable = mappable kw['cmap'] = mappable.cmap kw['norm'] = mappable.norm if isinstance(mappable, contour.ContourSet): CS = mappable kw['alpha'] = mappable.get_alpha() kw['boundaries'] = CS._levels kw['values'] = CS.cvalues kw['extend'] = CS.extend #kw['ticks'] = CS._levels kw.setdefault('ticks', ticker.FixedLocator(CS.levels, nbins=10)) kw['filled'] = CS.filled ColorbarBase.__init__(self, ax, **kw) if not CS.filled: self.add_lines(CS) else: if isinstance(mappable, martist.Artist): kw['alpha'] = mappable.get_alpha() ColorbarBase.__init__(self, ax, **kw) def on_mappable_changed(self, mappable): """ Updates this colorbar to match the mappable's properties. Typically this is automatically registered as an event handler by :func:`colorbar_factory` and should not be called manually. """ self.set_cmap(mappable.get_cmap()) self.set_clim(mappable.get_clim()) self.update_normal(mappable) def add_lines(self, CS, erase=True): ''' Add the lines from a non-filled :class:`~matplotlib.contour.ContourSet` to the colorbar. Set *erase* to False if these lines should be added to any pre-existing lines. ''' if not isinstance(CS, contour.ContourSet) or CS.filled: raise ValueError('add_lines is only for a ContourSet of lines') tcolors = [c[0] for c in CS.tcolors] tlinewidths = [t[0] for t in CS.tlinewidths] # The following was an attempt to get the colorbar lines # to follow subsequent changes in the contour lines, # but more work is needed: specifically, a careful # look at event sequences, and at how # to make one object track another automatically. #tcolors = [col.get_colors()[0] for col in CS.collections] #tlinewidths = [col.get_linewidth()[0] for lw in CS.collections] #print 'tlinewidths:', tlinewidths ColorbarBase.add_lines(self, CS.levels, tcolors, tlinewidths, erase=erase) def update_normal(self, mappable): ''' update solid, lines, etc. Unlike update_bruteforce, it does not clear the axes. This is meant to be called when the image or contour plot to which this colorbar belongs is changed. ''' self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) def update_bruteforce(self, mappable): ''' Destroy and rebuild the colorbar. This is intended to become obsolete, and will probably be deprecated and then removed. It is not called when the pyplot.colorbar function or the Figure.colorbar method are used to create the colorbar. ''' # We are using an ugly brute-force method: clearing and # redrawing the whole thing. The problem is that if any # properties have been changed by methods other than the # colorbar methods, those changes will be lost. self.ax.cla() # clearing the axes will delete outline, patch, solids, and lines: self.outline = None self.patch = None self.solids = None self.lines = list() self.dividers = None self.set_alpha(mappable.get_alpha()) self.cmap = mappable.cmap self.norm = mappable.norm self.config_axis() self.draw_all() if isinstance(self.mappable, contour.ContourSet): CS = self.mappable if not CS.filled: self.add_lines(CS) #if self.lines is not None: # tcolors = [c[0] for c in CS.tcolors] # self.lines.set_color(tcolors) #Fixme? Recalculate boundaries, ticks if vmin, vmax have changed. #Fixme: Some refactoring may be needed; we should not # be recalculating everything if there was a simple alpha # change. @docstring.Substitution(make_axes_kw_doc) def make_axes(parent, **kw): ''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar:: cax, kw = make_axes(parent, **kw) Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary. ''' orientation = kw.setdefault('orientation', 'vertical') fraction = kw.pop('fraction', 0.15) shrink = kw.pop('shrink', 1.0) aspect = kw.pop('aspect', 20) #pb = transforms.PBox(parent.get_position()) pb = parent.get_position(original=True).frozen() if orientation == 'vertical': pad = kw.pop('pad', 0.05) x1 = 1.0-fraction pb1, pbx, pbcb = pb.splitx(x1-pad, x1) pbcb = pbcb.shrunk(1.0, shrink).anchored('C', pbcb) anchor = kw.pop('anchor', (0.0, 0.5)) panchor = kw.pop('panchor', (1.0, 0.5)) else: pad = kw.pop('pad', 0.15) pbcb, pbx, pb1 = pb.splity(fraction, fraction+pad) pbcb = pbcb.shrunk(shrink, 1.0).anchored('C', pbcb) aspect = 1.0/aspect anchor = kw.pop('anchor', (0.5, 1.0)) panchor = kw.pop('panchor', (0.5, 0.0)) parent.set_position(pb1) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_axes(pbcb) cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw @docstring.Substitution(make_axes_kw_doc) def make_axes_gridspec(parent, **kw): ''' Resize and reposition a parent axes, and return a child axes suitable for a colorbar. This function is similar to make_axes. Prmary differences are * *make_axes_gridspec* should only be used with a subplot parent. * *make_axes* creates an instance of Axes. *make_axes_gridspec* creates an instance of Subplot. * *make_axes* updates the position of the parent. *make_axes_gridspec* replaces the grid_spec attribute of the parent with a new one. While this function is meant to be compatible with *make_axes*, there could be some minor differences.:: cax, kw = make_axes_gridspec(parent, **kw) Keyword arguments may include the following (with defaults): *orientation* 'vertical' or 'horizontal' %s All but the first of these are stripped from the input kw set. Returns (cax, kw), the child axes and the reduced kw dictionary. ''' orientation = kw.setdefault('orientation', 'vertical') fraction = kw.pop('fraction', 0.15) shrink = kw.pop('shrink', 1.0) aspect = kw.pop('aspect', 20) x1 = 1.0-fraction # for shrinking pad_s = (1.-shrink)*0.5 wh_ratios = [pad_s, shrink, pad_s] gs_from_subplotspec = gridspec.GridSpecFromSubplotSpec if orientation == 'vertical': pad = kw.pop('pad', 0.05) wh_space = 2*pad/(1-pad) gs = gs_from_subplotspec(1, 2, subplot_spec=parent.get_subplotspec(), wspace=wh_space, width_ratios=[x1-pad, fraction] ) gs2 = gs_from_subplotspec(3, 1, subplot_spec=gs[1], hspace=0., height_ratios=wh_ratios, ) anchor = (0.0, 0.5) panchor = (1.0, 0.5) else: pad = kw.pop('pad', 0.15) wh_space = 2*pad/(1-pad) gs = gs_from_subplotspec(2, 1, subplot_spec=parent.get_subplotspec(), hspace=wh_space, height_ratios=[x1-pad, fraction] ) gs2 = gs_from_subplotspec(1, 3, subplot_spec=gs[1], wspace=0., width_ratios=wh_ratios, ) aspect = 1.0/aspect anchor = (0.5, 1.0) panchor = (0.5, 0.0) parent.set_subplotspec(gs[0]) parent.update_params() parent.set_position(parent.figbox) parent.set_anchor(panchor) fig = parent.get_figure() cax = fig.add_subplot(gs2[1]) cax.set_aspect(aspect, anchor=anchor, adjustable='box') return cax, kw class ColorbarPatch(Colorbar): """ A Colorbar which is created using :class:`~matplotlib.patches.Patch` rather than the default :func:`~matplotlib.axes.pcolor`. It uses a list of Patch instances instead of a :class:`~matplotlib.collections.PatchCollection` because the latter does not allow the hatch pattern to vary among the members of the collection. """ def __init__(self, ax, mappable, **kw): # we do not want to override the behaviour of solids # so add a new attribute which will be a list of the # colored patches in the colorbar self.solids_patches = [] Colorbar.__init__(self, ax, mappable, **kw) def _add_solids(self, X, Y, C): """ Draw the colors using :class:`~matplotlib.patches.Patch`; optionally add separators. """ # Save, set, and restore hold state to keep pcolor from # clearing the axes. Ordinarily this will not be needed, # since the axes object should already have hold set. _hold = self.ax.ishold() self.ax.hold(True) kw = {'alpha':self.alpha,} n_segments = len(C) # ensure there are sufficent hatches hatches = self.mappable.hatches * n_segments patches = [] for i in xrange(len(X)-1): val = C[i][0] hatch = hatches[i] xy = np.array([[X[i][0], Y[i][0]], [X[i][1], Y[i][0]], [X[i+1][1], Y[i+1][0]], [X[i+1][0], Y[i+1][1]]]) if self.orientation == 'horizontal': # if horizontal swap the xs and ys xy = xy[..., ::-1] patch = mpatches.PathPatch(mpath.Path(xy), facecolor=self.cmap(self.norm(val)), hatch=hatch, edgecolor='none', linewidth=0, antialiased=False, **kw ) self.ax.add_patch(patch) patches.append(patch) if self.solids_patches: for solid in self.solids_patches: solid.remove() self.solids_patches = patches if self.dividers is not None: self.dividers.remove() self.dividers = None if self.drawedges: self.dividers = collections.LineCollection(self._edges(X,Y), colors=(mpl.rcParams['axes.edgecolor'],), linewidths=(0.5*mpl.rcParams['axes.linewidth'],) ) self.ax.add_collection(self.dividers) self.ax.hold(_hold) def colorbar_factory(cax, mappable, **kwargs): """ Creates a colorbar on the given axes for the given mappable. Typically, for automatic colorbar placement given only a mappable use :meth:`~matplotlib.figure.Figure.colorbar`. """ # if the given mappable is a contourset with any hatching, use # ColorbarPatch else use Colorbar if (isinstance(mappable, contour.ContourSet) \ and any([hatch is not None for hatch in mappable.hatches])): cb = ColorbarPatch(cax, mappable, **kwargs) else: cb = Colorbar(cax, mappable, **kwargs) mappable.callbacksSM.connect('changed', cb.on_mappable_changed) mappable.set_colorbar(cb, cax) return cb