#======================================================================= """ A set of utilities for comparing results. """ #======================================================================= from __future__ import division import matplotlib from matplotlib.testing.noseclasses import ImageComparisonFailure from matplotlib.testing import image_util, util from matplotlib import _png from matplotlib import _get_configdir from distutils import version import hashlib import math import operator import os import numpy as np import shutil import subprocess import sys from functools import reduce #======================================================================= __all__ = [ 'compare_float', 'compare_images', 'comparable_formats', ] #----------------------------------------------------------------------- def make_test_filename(fname, purpose): """ Make a new filename by inserting `purpose` before the file's extension. """ base, ext = os.path.splitext(fname) return '%s-%s%s' % (base, purpose, ext) def compare_float( expected, actual, relTol = None, absTol = None ): """Fail if the floating point values are not close enough, with the givem message. You can specify a relative tolerance, absolute tolerance, or both. """ if relTol is None and absTol is None: exMsg = "You haven't specified a 'relTol' relative tolerance " exMsg += "or a 'absTol' absolute tolerance function argument. " exMsg += "You must specify one." raise ValueError(exMsg) msg = "" if absTol is not None: absDiff = abs( expected - actual ) if absTol < absDiff: expectedStr = str( expected ) actualStr = str( actual ) absDiffStr = str( absDiff ) absTolStr = str( absTol ) msg += "\n" msg += " Expected: " + expectedStr + "\n" msg += " Actual: " + actualStr + "\n" msg += " Abs Diff: " + absDiffStr + "\n" msg += " Abs Tol: " + absTolStr + "\n" if relTol is not None: # The relative difference of the two values. If the expected value is # zero, then return the absolute value of the difference. relDiff = abs( expected - actual ) if expected: relDiff = relDiff / abs( expected ) if relTol < relDiff: # The relative difference is a ratio, so it's always unitless. relDiffStr = str( relDiff ) relTolStr = str( relTol ) expectedStr = str( expected ) actualStr = str( actual ) msg += "\n" msg += " Expected: " + expectedStr + "\n" msg += " Actual: " + actualStr + "\n" msg += " Rel Diff: " + relDiffStr + "\n" msg += " Rel Tol: " + relTolStr + "\n" if msg: return msg else: return None #----------------------------------------------------------------------- # A dictionary that maps filename extensions to functions that map # parameters old and new to a list that can be passed to Popen to # convert files with that extension to png format. def get_cache_dir(): cache_dir = os.path.join(_get_configdir(), 'test_cache') if not os.path.exists(cache_dir): try: os.makedirs(cache_dir) except IOError: return None if not os.access(cache_dir, os.W_OK): return None return cache_dir def get_file_hash(path, block_size=2**20): md5 = hashlib.md5() with open(path, 'rb') as fd: while True: data = fd.read(block_size) if not data: break md5.update(data) return md5.hexdigest() converter = { } def make_external_conversion_command(cmd): def convert(old, new): cmdline = cmd(old, new) pipe = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if not os.path.exists(new) or errcode: msg = "Conversion command failed:\n%s\n" % ' '.join(cmdline) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) return convert if matplotlib.checkdep_ghostscript() is not None: def make_ghostscript_conversion_command(): # FIXME: make checkdep_ghostscript return the command if sys.platform == 'win32': gs = 'gswin32c' else: gs = 'gs' cmd = [gs, '-q', '-sDEVICE=png16m', '-sOutputFile=-'] process = util.MiniExpect(cmd) def do_convert(old, new): process.expect("GS>") process.sendline("(%s) run" % old.replace('\\', '/')) with open(new, 'wb') as fd: process.expect(">>showpage, press to continue<<", fd) process.sendline('') return do_convert converter['pdf'] = make_ghostscript_conversion_command() converter['eps'] = make_ghostscript_conversion_command() if matplotlib.checkdep_inkscape() is not None: cmd = lambda old, new: \ ['inkscape', '-z', old, '--export-png', new] converter['svg'] = make_external_conversion_command(cmd) def comparable_formats(): '''Returns the list of file formats that compare_images can compare on this system.''' return ['png'] + converter.keys() def convert(filename, cache): ''' Convert the named file into a png file. Returns the name of the created file. If *cache* is True, the result of the conversion is cached in `~/.matplotlib/test_cache/`. The caching is based on a hash of the exact contents of the input file. The is no limit on the size of the cache, so it may need to be manually cleared periodically. ''' base, extension = filename.rsplit('.', 1) if extension not in converter: raise ImageComparisonFailure("Don't know how to convert %s files to png" % extension) newname = base + '_' + extension + '.png' if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) # Only convert the file if the destination doesn't already exist or # is out of date. if (not os.path.exists(newname) or os.stat(newname).st_mtime < os.stat(filename).st_mtime): if cache: cache_dir = get_cache_dir() else: cache_dir = None if cache_dir is not None: hash = get_file_hash(filename) new_ext = os.path.splitext(newname)[1] cached_file = os.path.join(cache_dir, hash + new_ext) if os.path.exists(cached_file): shutil.copyfile(cached_file, newname) return newname converter[extension](filename, newname) if cache_dir is not None: shutil.copyfile(newname, cached_file) return newname verifiers = { } def verify(filename): """ Verify the file through some sort of verification tool. """ if not os.path.exists(filename): raise IOError("'%s' does not exist" % filename) base, extension = filename.rsplit('.', 1) verifier = verifiers.get(extension, None) if verifier is not None: cmd = verifier(filename) pipe = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout, stderr = pipe.communicate() errcode = pipe.wait() if errcode != 0: msg = "File verification command failed:\n%s\n" % ' '.join(cmd) if stdout: msg += "Standard output:\n%s\n" % stdout if stderr: msg += "Standard error:\n%s\n" % stderr raise IOError(msg) # Turning this off, because it seems to cause multiprocessing issues if matplotlib.checkdep_xmllint() and False: verifiers['svg'] = lambda filename: [ 'xmllint', '--valid', '--nowarning', '--noout', filename] def crop_to_same(actual_path, actual_image, expected_path, expected_image): # clip the images to the same size -- this is useful only when # comparing eps to pdf if actual_path[-7:-4] == 'eps' and expected_path[-7:-4] == 'pdf': aw, ah = actual_image.shape ew, eh = expected_image.shape actual_image = actual_image[int(aw/2-ew/2):int(aw/2+ew/2),int(ah/2-eh/2):int(ah/2+eh/2)] return actual_image, expected_image def calculate_rms(expectedImage, actualImage): # compare the resulting image histogram functions expected_version = version.LooseVersion("1.6") found_version = version.LooseVersion(np.__version__) # On Numpy 1.6, we can use bincount with minlength, which is much faster than # using histogram if found_version >= expected_version: rms = 0 for i in xrange(0, 3): h1p = expectedImage[:,:,i] h2p = actualImage[:,:,i] h1h = np.bincount(h1p.ravel(), minlength=256) h2h = np.bincount(h2p.ravel(), minlength=256) rms += np.sum(np.power((h1h-h2h), 2)) else: rms = 0 bins = np.arange(257) for i in xrange(0, 3): h1p = expectedImage[:,:,i] h2p = actualImage[:,:,i] h1h = np.histogram(h1p, bins=bins)[0] h2h = np.histogram(h2p, bins=bins)[0] rms += np.sum(np.power((h1h-h2h), 2)) rms = np.sqrt(rms / (256 * 3)) return rms def compare_images( expected, actual, tol, in_decorator=False ): '''Compare two image files - not the greatest, but fast and good enough. = EXAMPLE # img1 = "./baseline/plot.png" # img2 = "./output/plot.png" # # compare_images( img1, img2, 0.001 ): = INPUT VARIABLES - expected The filename of the expected image. - actual The filename of the actual image. - tol The tolerance (a unitless float). This is used to determine the 'fuzziness' to use when comparing images. - in_decorator If called from image_comparison decorator, this should be True. (default=False) ''' verify(actual) # Convert the image to png extension = expected.split('.')[-1] if extension != 'png': actual = convert(actual, False) expected = convert(expected, True) # open the image files and remove the alpha channel (if it exists) expectedImage = _png.read_png_int( expected ) actualImage = _png.read_png_int( actual ) actualImage, expectedImage = crop_to_same(actual, actualImage, expected, expectedImage) # compare the resulting image histogram functions expected_version = version.LooseVersion("1.6") found_version = version.LooseVersion(np.__version__) rms = calculate_rms(expectedImage, actualImage) diff_image = make_test_filename(actual, 'failed-diff') if ( (rms / 10000.0) <= tol ): if os.path.exists(diff_image): os.unlink(diff_image) return None # For Agg-rendered images, we can retry by ignoring pixels with # differences of only 1 if extension == 'png': # Remove differences of only 1 diffImage = np.abs(np.asarray(actualImage, dtype=np.int) - np.asarray(expectedImage, dtype=np.int)) actualImage = np.where(diffImage <= 1, expectedImage, actualImage) rms = calculate_rms(expectedImage, actualImage) if ( (rms / 10000.0) <= tol ): if os.path.exists(diff_image): os.unlink(diff_image) return None save_diff_image( expected, actual, diff_image ) if in_decorator: results = dict( rms = rms, expected = str(expected), actual = str(actual), diff = str(diff_image), ) return results else: # old-style call from mplTest directory msg = " Error: Image files did not match.\n" \ " RMS Value: " + str( rms / 10000.0 ) + "\n" \ " Expected:\n " + str( expected ) + "\n" \ " Actual:\n " + str( actual ) + "\n" \ " Difference:\n " + str( diff_image ) + "\n" \ " Tolerance: " + str( tol ) + "\n" return msg def save_diff_image( expected, actual, output ): expectedImage = _png.read_png( expected ) actualImage = _png.read_png( actual ) actualImage, expectedImage = crop_to_same(actual, actualImage, expected, expectedImage) expectedImage = np.array(expectedImage).astype(np.float) actualImage = np.array(actualImage).astype(np.float) assert expectedImage.ndim==actualImage.ndim assert expectedImage.shape==actualImage.shape absDiffImage = abs(expectedImage-actualImage) # expand differences in luminance domain absDiffImage *= 255 * 10 save_image_np = np.clip(absDiffImage, 0, 255).astype(np.uint8) height, width, depth = save_image_np.shape # The PDF renderer doesn't produce an alpha channel, but the # matplotlib PNG writer requires one, so expand the array if depth == 3: with_alpha = np.empty((height, width, 4), dtype=np.uint8) with_alpha[:,:,0:3] = save_image_np save_image_np = with_alpha # Hard-code the alpha channel to fully solid save_image_np[:,:,3] = 255 _png.write_png(save_image_np.tostring(), width, height, output)