from __future__ import print_function import numpy as np from matplotlib.testing.decorators import image_comparison, knownfailureif, cleanup from matplotlib import rcParams import matplotlib.pyplot as plt from nose.tools import assert_raises from numpy.testing import assert_array_equal import io import os try: from PIL import Image HAS_PIL = True except ImportError: HAS_PIL = False @image_comparison(baseline_images=['image_interps']) def test_image_interps(): 'make the basic nearest, bilinear and bicubic interps' X = np.arange(100) X = X.reshape(5, 20) fig = plt.figure() ax1 = fig.add_subplot(311) ax1.imshow(X, interpolation='nearest') ax1.set_title('three interpolations') ax1.set_ylabel('nearest') ax2 = fig.add_subplot(312) ax2.imshow(X, interpolation='bilinear') ax2.set_ylabel('bilinear') ax3 = fig.add_subplot(313) ax3.imshow(X, interpolation='bicubic') ax3.set_ylabel('bicubic') @image_comparison(baseline_images=['interp_nearest_vs_none'], extensions=['pdf', 'svg'], remove_text=True) def test_interp_nearest_vs_none(): 'Test the effect of "nearest" and "none" interpolation' # Setting dpi to something really small makes the difference very # visible. This works fine with pdf, since the dpi setting doesn't # affect anything but images, but the agg output becomes unusably # small. rcParams['savefig.dpi'] = 3 X = np.array([[[218, 165, 32], [122, 103, 238]], [[127, 255, 0], [255, 99, 71]]], dtype=np.uint8) fig = plt.figure() ax1 = fig.add_subplot(121) ax1.imshow(X, interpolation='none') ax1.set_title('interpolation none') ax2 = fig.add_subplot(122) ax2.imshow(X, interpolation='nearest') ax2.set_title('interpolation nearest') @image_comparison(baseline_images=['figimage-0', 'figimage-1'], extensions=['png'], tol=1.5e-3) def test_figimage(): 'test the figimage method' for suppressComposite in False, True: fig = plt.figure(figsize=(2,2), dpi=100) fig.suppressComposite = suppressComposite x,y = np.ix_(np.arange(100.0)/100.0, np.arange(100.0)/100.0) z = np.sin(x**2 + y**2 - x*y) c = np.sin(20*x**2 + 50*y**2) img = z + c/5 fig.figimage(img, xo=0, yo=0, origin='lower') fig.figimage(img[::-1,:], xo=0, yo=100, origin='lower') fig.figimage(img[:,::-1], xo=100, yo=0, origin='lower') fig.figimage(img[::-1,::-1], xo=100, yo=100, origin='lower') @cleanup def test_image_python_io(): fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1,2,3]) buffer = io.BytesIO() fig.savefig(buffer) buffer.seek(0) plt.imread(buffer) @knownfailureif(not HAS_PIL) def test_imread_pil_uint16(): img = plt.imread(os.path.join(os.path.dirname(__file__), 'baseline_images', 'test_image', 'uint16.tif')) assert (img.dtype == np.uint16) assert np.sum(img) == 134184960 # def test_image_unicode_io(): # fig = plt.figure() # ax = fig.add_subplot(111) # ax.plot([1,2,3]) # fname = u"\u0a3a\u0a3a.png" # fig.savefig(fname) # plt.imread(fname) # os.remove(fname) def test_imsave(): # The goal here is that the user can specify an output logical DPI # for the image, but this will not actually add any extra pixels # to the image, it will merely be used for metadata purposes. # So we do the traditional case (dpi == 1), and the new case (dpi # == 100) and read the resulting PNG files back in and make sure # the data is 100% identical. from numpy import random random.seed(1) data = random.rand(256, 128) buff_dpi1 = io.BytesIO() plt.imsave(buff_dpi1, data, dpi=1) buff_dpi100 = io.BytesIO() plt.imsave(buff_dpi100, data, dpi=100) buff_dpi1.seek(0) arr_dpi1 = plt.imread(buff_dpi1) buff_dpi100.seek(0) arr_dpi100 = plt.imread(buff_dpi100) assert arr_dpi1.shape == (256, 128, 4) assert arr_dpi100.shape == (256, 128, 4) assert_array_equal(arr_dpi1, arr_dpi100) def test_imsave_color_alpha(): # The goal is to test that imsave will accept arrays with ndim=3 where # the third dimension is color and alpha without raising any exceptions from numpy import random random.seed(1) data = random.rand(256, 128, 4) buff = io.BytesIO() plt.imsave(buff, data) buff.seek(0) arr_buf = plt.imread(buff) assert arr_buf.shape == data.shape # Unfortunately, the AGG process "flattens" the RGBA data # into an equivalent RGB data with no transparency. So we # Can't directly compare the arrays like we could in some # other imsave tests. @image_comparison(baseline_images=['image_clip']) def test_image_clip(): from math import pi fig = plt.figure() ax = fig.add_subplot(111, projection='hammer') d = [[1,2],[3,4]] im = ax.imshow(d, extent=(-pi,pi,-pi/2,pi/2)) @image_comparison(baseline_images=['imshow'], tol=1.5e-3, remove_text=True) def test_imshow(): import numpy as np import matplotlib.pyplot as plt fig = plt.figure() arr = np.arange(100).reshape((10, 10)) ax = fig.add_subplot(111) ax.imshow(arr, interpolation="bilinear", extent=(1,2,1,2)) ax.set_xlim(0,3) ax.set_ylim(0,3) @image_comparison(baseline_images=['no_interpolation_origin'], remove_text=True) def test_no_interpolation_origin(): fig = plt.figure() ax = fig.add_subplot(211) ax.imshow(np.arange(100).reshape((2, 50)), origin="lower", interpolation='none') ax = fig.add_subplot(212) ax.imshow(np.arange(100).reshape((2, 50)), interpolation='none') @image_comparison(baseline_images=['image_shift'], remove_text=True, extensions=['pdf', 'svg']) def test_image_shift(): from matplotlib.colors import LogNorm imgData = [[1.0/(x) + 1.0/(y) for x in range(1,100)] for y in range(1,100)] tMin=734717.945208 tMax=734717.946366 fig = plt.figure() ax = fig.add_subplot(111) ax.imshow(imgData, norm=LogNorm(), interpolation='none', extent=(tMin, tMax, 1, 100)) ax.set_aspect('auto') if __name__=='__main__': import nose nose.runmodule(argv=['-s','--with-doctest'], exit=False)