"""Utilities for input validation""" # Authors: Olivier Grisel and Gael Varoquaux and others (please update me) # License: BSD 3 import warnings import numbers import numpy as np from scipy import sparse from .fixes import safe_copy def _assert_all_finite(X): """Like assert_all_finite, but only for ndarray.""" if (X.dtype.char in np.typecodes['AllFloat'] and not np.isfinite(X.sum()) and not np.isfinite(X).all()): raise ValueError("Array contains NaN or infinity.") def assert_all_finite(X): """Throw a ValueError if X contains NaN or infinity. Input MUST be an np.ndarray instance or a scipy.sparse matrix.""" # First try an O(n) time, O(1) space solution for the common case that # there everything is finite; fall back to O(n) space np.isfinite to # prevent false positives from overflow in sum method. _assert_all_finite(X.data if sparse.issparse(X) else X) def safe_asarray(X, dtype=None, order=None): """Convert X to an array or sparse matrix. Prevents copying X when possible; sparse matrices are passed through.""" if sparse.issparse(X): assert_all_finite(X.data) else: X = np.asarray(X, dtype, order) assert_all_finite(X) return X def as_float_array(X, copy=True): """Converts an array-like to an array of floats The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy. Parameters ---------- X : {array-like, sparse matrix} copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type. Returns ------- XT : {array, sparse matrix} An array of type np.float """ if isinstance(X, np.matrix) or (not isinstance(X, np.ndarray) and not sparse.issparse(X)): return safe_asarray(X, dtype=np.float64) elif sparse.issparse(X) and X.dtype in [np.float32, np.float64]: return X.copy() if copy else X elif X.dtype in [np.float32, np.float64]: # is numpy array return X.copy('F' if X.flags['F_CONTIGUOUS'] else 'C') if copy else X else: return X.astype(np.float32 if X.dtype == np.int32 else np.float64) def array2d(X, dtype=None, order=None, copy=False): """Returns at least 2-d array with data from X""" if sparse.issparse(X): raise TypeError('A sparse matrix was passed, but dense data ' 'is required. Use X.toarray() to convert to dense.') X_2d = np.asarray(np.atleast_2d(X), dtype=dtype, order=order) _assert_all_finite(X_2d) if X is X_2d and copy: X_2d = safe_copy(X_2d) return X_2d def _atleast2d_or_sparse(X, dtype, order, copy, sparse_class, convmethod): if sparse.issparse(X): # Note: order is ignored because CSR matrices hold data in 1-d arrays if dtype is None or X.dtype == dtype: X = getattr(X, convmethod)() else: X = sparse_class(X, dtype=dtype) _assert_all_finite(X.data) else: X = array2d(X, dtype=dtype, order=order, copy=copy) _assert_all_finite(X) return X def atleast2d_or_csc(X, dtype=None, order=None, copy=False): """Like numpy.atleast_2d, but converts sparse matrices to CSC format. Also, converts np.matrix to np.ndarray. """ return _atleast2d_or_sparse(X, dtype, order, copy, sparse.csc_matrix, "tocsc") def atleast2d_or_csr(X, dtype=None, order=None, copy=False): """Like numpy.atleast_2d, but converts sparse matrices to CSR format Also, converts np.matrix to np.ndarray. """ return _atleast2d_or_sparse(X, dtype, order, copy, sparse.csr_matrix, "tocsr") def _num_samples(x): """Return number of samples in array-like x.""" if not hasattr(x, '__len__') and not hasattr(x, 'shape'): raise TypeError("Expected sequence or array-like, got %r" % x) return x.shape[0] if hasattr(x, 'shape') else len(x) def check_arrays(*arrays, **options): """Check that all arrays have consistent first dimensions. Checks whether all objects in arrays have the same shape or length. By default lists and tuples are converted to numpy arrays. It is possible to enforce certain properties, such as dtype, continguity and sparse matrix format (if a sparse matrix is passed). Converting lists to arrays can be disabled by setting ``allow_lists=True``. Lists can then contain arbitrary objects and are not checked for dtype, finiteness or anything else but length. Arrays are still checked and possibly converted. Parameters ---------- *arrays : sequence of arrays or scipy.sparse matrices with same shape[0] Python lists or tuples occurring in arrays are converted to 1D numpy arrays, unless allow_lists is specified. sparse_format : 'csr', 'csc' or 'dense', None by default If not None, any scipy.sparse matrix is converted to Compressed Sparse Rows or Compressed Sparse Columns representations. If 'dense', an error is raised when a sparse array is passed. copy : boolean, False by default If copy is True, ensure that returned arrays are copies of the original (if not already converted to another format earlier in the process). check_ccontiguous : boolean, False by default Check that the arrays are C contiguous dtype : a numpy dtype instance, None by default Enforce a specific dtype. allow_lists : bool Allow lists of arbitrary objects as input, just check their length. Disables """ sparse_format = options.pop('sparse_format', None) if sparse_format not in (None, 'csr', 'csc', 'dense'): raise ValueError('Unexpected sparse format: %r' % sparse_format) copy = options.pop('copy', False) check_ccontiguous = options.pop('check_ccontiguous', False) dtype = options.pop('dtype', None) allow_lists = options.pop('allow_lists', False) if options: raise TypeError("Unexpected keyword arguments: %r" % options.keys()) if len(arrays) == 0: return None n_samples = _num_samples(arrays[0]) checked_arrays = [] for array in arrays: array_orig = array if array is None: # special case: ignore optional y=None kwarg pattern checked_arrays.append(array) continue size = _num_samples(array) if size != n_samples: raise ValueError("Found array with dim %d. Expected %d" % (size, n_samples)) if not allow_lists or hasattr(array, "shape"): if sparse.issparse(array): if sparse_format == 'csr': array = array.tocsr() elif sparse_format == 'csc': array = array.tocsc() elif sparse_format == 'dense': raise TypeError('A sparse matrix was passed, but dense ' 'data is required. Use X.toarray() to ' 'convert to a dense numpy array.') if check_ccontiguous: array.data = np.ascontiguousarray(array.data, dtype=dtype) else: array.data = np.asarray(array.data, dtype=dtype) _assert_all_finite(array.data) else: if check_ccontiguous: array = np.ascontiguousarray(array, dtype=dtype) else: array = np.asarray(array, dtype=dtype) _assert_all_finite(array) if copy and array is array_orig: array = array.copy() checked_arrays.append(array) return checked_arrays def warn_if_not_float(X, estimator='This algorithm'): """Warning utility function to check that data type is floating point""" if not isinstance(estimator, basestring): estimator = estimator.__class__.__name__ if X.dtype.kind != 'f': warnings.warn("%s assumes floating point values as input, " "got %s" % (estimator, X.dtype)) def check_random_state(seed): """Turn seed into a np.random.RandomState instance If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. """ if seed is None or seed is np.random: return np.random.mtrand._rand if isinstance(seed, numbers.Integral): return np.random.RandomState(seed) if isinstance(seed, np.random.RandomState): return seed raise ValueError('%r cannot be used to seed a numpy.random.RandomState' ' instance' % seed)