""" NetCDF reader/writer module. This module is used to read and create NetCDF files. NetCDF files are accessed through the `netcdf_file` object. Data written to and from NetCDF files are contained in `netcdf_variable` objects. Attributes are given as member variables of the `netcdf_file` and `netcdf_variable` objects. Notes ----- NetCDF files are a self-describing binary data format. The file contains metadata that describes the dimensions and variables in the file. More details about NetCDF files can be found `here `_. There are three main sections to a NetCDF data structure: 1. Dimensions 2. Variables 3. Attributes The dimensions section records the name and length of each dimension used by the variables. The variables would then indicate which dimensions it uses and any attributes such as data units, along with containing the data values for the variable. It is good practice to include a variable that is the same name as a dimension to provide the values for that axes. Lastly, the attributes section would contain additional information such as the name of the file creator or the instrument used to collect the data. When writing data to a NetCDF file, there is often the need to indicate the 'record dimension'. A record dimension is the unbounded dimension for a variable. For example, a temperature variable may have dimensions of latitude, longitude and time. If one wants to add more temperature data to the NetCDF file as time progresses, then the temperature variable should have the time dimension flagged as the record dimension. This module implements the Scientific.IO.NetCDF API to read and create NetCDF files. The same API is also used in the PyNIO and pynetcdf modules, allowing these modules to be used interchangeably when working with NetCDF files. The major advantage of this module over other modules is that it doesn't require the code to be linked to the NetCDF libraries. In addition, the NetCDF file header contains the position of the data in the file, so access can be done in an efficient manner without loading unnecessary data into memory. It uses the ``mmap`` module to create Numpy arrays mapped to the data on disk, for the same purpose. Examples -------- To create a NetCDF file: >>> from scipy.io import netcdf >>> f = netcdf.netcdf_file('simple.nc', 'w') >>> f.history = 'Created for a test' >>> f.createDimension('time', 10) >>> time = f.createVariable('time', 'i', ('time',)) >>> time[:] = range(10) >>> time.units = 'days since 2008-01-01' >>> f.close() Note the assignment of ``range(10)`` to ``time[:]``. Exposing the slice of the time variable allows for the data to be set in the object, rather than letting ``range(10)`` overwrite the ``time`` variable. To read the NetCDF file we just created: >>> from scipy.io import netcdf >>> f = netcdf.netcdf_file('simple.nc', 'r') >>> print f.history Created for a test >>> time = f.variables['time'] >>> print time.units days since 2008-01-01 >>> print time.shape (10,) >>> print time[-1] 9 >>> f.close() """ #TODO: # * properly implement ``_FillValue``. # * implement Jeff Whitaker's patch for masked variables. # * fix character variables. # * implement PAGESIZE for Python 2.6? #The Scientific.IO.NetCDF API allows attributes to be added directly to #instances of ``netcdf_file`` and ``netcdf_variable``. To differentiate #between user-set attributes and instance attributes, user-set attributes #are automatically stored in the ``_attributes`` attribute by overloading #``__setattr__``. This is the reason why the code sometimes uses #``obj.__dict__['key'] = value``, instead of simply ``obj.key = value``; #otherwise the key would be inserted into userspace attributes. __all__ = ['netcdf_file'] from operator import mul from mmap import mmap, ACCESS_READ import numpy as np from numpy.compat import asbytes, asstr from numpy import fromstring, ndarray, dtype, empty, array, asarray from numpy import little_endian as LITTLE_ENDIAN ABSENT = asbytes('\x00\x00\x00\x00\x00\x00\x00\x00') ZERO = asbytes('\x00\x00\x00\x00') NC_BYTE = asbytes('\x00\x00\x00\x01') NC_CHAR = asbytes('\x00\x00\x00\x02') NC_SHORT = asbytes('\x00\x00\x00\x03') NC_INT = asbytes('\x00\x00\x00\x04') NC_FLOAT = asbytes('\x00\x00\x00\x05') NC_DOUBLE = asbytes('\x00\x00\x00\x06') NC_DIMENSION = asbytes('\x00\x00\x00\n') NC_VARIABLE = asbytes('\x00\x00\x00\x0b') NC_ATTRIBUTE = asbytes('\x00\x00\x00\x0c') TYPEMAP = { NC_BYTE: ('b', 1), NC_CHAR: ('c', 1), NC_SHORT: ('h', 2), NC_INT: ('i', 4), NC_FLOAT: ('f', 4), NC_DOUBLE: ('d', 8) } REVERSE = { ('b', 1): NC_BYTE, ('B', 1): NC_CHAR, ('c', 1): NC_CHAR, ('h', 2): NC_SHORT, ('i', 4): NC_INT, ('f', 4): NC_FLOAT, ('d', 8): NC_DOUBLE, # these come from asarray(1).dtype.char and asarray('foo').dtype.char, # used when getting the types from generic attributes. ('l', 4): NC_INT, ('S', 1): NC_CHAR } class netcdf_file(object): """ A file object for NetCDF data. A `netcdf_file` object has two standard attributes: `dimensions` and `variables`. The values of both are dictionaries, mapping dimension names to their associated lengths and variable names to variables, respectively. Application programs should never modify these dictionaries. All other attributes correspond to global attributes defined in the NetCDF file. Global file attributes are created by assigning to an attribute of the `netcdf_file` object. Parameters ---------- filename : string or file-like string -> filename mode : {'r', 'w'}, optional read-write mode, default is 'r' mmap : None or bool, optional Whether to mmap `filename` when reading. Default is True when `filename` is a file name, False when `filename` is a file-like object version : {1, 2}, optional version of netcdf to read / write, where 1 means *Classic format* and 2 means *64-bit offset format*. Default is 1. See `here `_ for more info. """ def __init__(self, filename, mode='r', mmap=None, version=1): """Initialize netcdf_file from fileobj (str or file-like).""" if hasattr(filename, 'seek'): # file-like self.fp = filename self.filename = 'None' if mmap is None: mmap = False elif mmap and not hasattr(filename, 'fileno'): raise ValueError('Cannot use file object for mmap') else: # maybe it's a string self.filename = filename self.fp = open(self.filename, '%sb' % mode) if mmap is None: mmap = True self.use_mmap = mmap self.version_byte = version if not mode in 'rw': raise ValueError("Mode must be either 'r' or 'w'.") self.mode = mode self.dimensions = {} self.variables = {} self._dims = [] self._recs = 0 self._recsize = 0 self._attributes = {} if mode == 'r': self._read() def __setattr__(self, attr, value): # Store user defined attributes in a separate dict, # so we can save them to file later. try: self._attributes[attr] = value except AttributeError: pass self.__dict__[attr] = value def close(self): """Closes the NetCDF file.""" if not self.fp.closed: try: self.flush() finally: self.fp.close() __del__ = close def createDimension(self, name, length): """ Adds a dimension to the Dimension section of the NetCDF data structure. Note that this function merely adds a new dimension that the variables can reference. The values for the dimension, if desired, should be added as a variable using `createVariable`, referring to this dimension. Parameters ---------- name : str Name of the dimension (Eg, 'lat' or 'time'). length : int Length of the dimension. See Also -------- createVariable """ self.dimensions[name] = length self._dims.append(name) def createVariable(self, name, type, dimensions): """ Create an empty variable for the `netcdf_file` object, specifying its data type and the dimensions it uses. Parameters ---------- name : str Name of the new variable. type : dtype or str Data type of the variable. dimensions : sequence of str List of the dimension names used by the variable, in the desired order. Returns ------- variable : netcdf_variable The newly created ``netcdf_variable`` object. This object has also been added to the `netcdf_file` object as well. See Also -------- createDimension Notes ----- Any dimensions to be used by the variable should already exist in the NetCDF data structure or should be created by `createDimension` prior to creating the NetCDF variable. """ shape = tuple([self.dimensions[dim] for dim in dimensions]) shape_ = tuple([dim or 0 for dim in shape]) # replace None with 0 for numpy type = dtype(type) typecode, size = type.char, type.itemsize if (typecode, size) not in REVERSE: raise ValueError("NetCDF 3 does not support type %s" % type) data = empty(shape_, dtype=type) self.variables[name] = netcdf_variable(data, typecode, size, shape, dimensions) return self.variables[name] def flush(self): """ Perform a sync-to-disk flush if the `netcdf_file` object is in write mode. See Also -------- sync : Identical function """ if hasattr(self, 'mode') and self.mode is 'w': self._write() sync = flush def _write(self): self.fp.seek(0) self.fp.write(asbytes('CDF')) self.fp.write(array(self.version_byte, '>b').tostring()) # Write headers and data. self._write_numrecs() self._write_dim_array() self._write_gatt_array() self._write_var_array() def _write_numrecs(self): # Get highest record count from all record variables. for var in self.variables.values(): if var.isrec and len(var.data) > self._recs: self.__dict__['_recs'] = len(var.data) self._pack_int(self._recs) def _write_dim_array(self): if self.dimensions: self.fp.write(NC_DIMENSION) self._pack_int(len(self.dimensions)) for name in self._dims: self._pack_string(name) length = self.dimensions[name] self._pack_int(length or 0) # replace None with 0 for record dimension else: self.fp.write(ABSENT) def _write_gatt_array(self): self._write_att_array(self._attributes) def _write_att_array(self, attributes): if attributes: self.fp.write(NC_ATTRIBUTE) self._pack_int(len(attributes)) for name, values in attributes.items(): self._pack_string(name) self._write_values(values) else: self.fp.write(ABSENT) def _write_var_array(self): if self.variables: self.fp.write(NC_VARIABLE) self._pack_int(len(self.variables)) # Sort variables non-recs first, then recs. We use a DSU # since some people use pupynere with Python 2.3.x. deco = [ (v._shape and not v.isrec, k) for (k, v) in self.variables.items() ] deco.sort() variables = [ k for (unused, k) in deco ][::-1] # Set the metadata for all variables. for name in variables: self._write_var_metadata(name) # Now that we have the metadata, we know the vsize of # each record variable, so we can calculate recsize. self.__dict__['_recsize'] = sum([ var._vsize for var in self.variables.values() if var.isrec]) # Set the data for all variables. for name in variables: self._write_var_data(name) else: self.fp.write(ABSENT) def _write_var_metadata(self, name): var = self.variables[name] self._pack_string(name) self._pack_int(len(var.dimensions)) for dimname in var.dimensions: dimid = self._dims.index(dimname) self._pack_int(dimid) self._write_att_array(var._attributes) nc_type = REVERSE[var.typecode(), var.itemsize()] self.fp.write(asbytes(nc_type)) if not var.isrec: vsize = var.data.size * var.data.itemsize vsize += -vsize % 4 else: # record variable try: vsize = var.data[0].size * var.data.itemsize except IndexError: vsize = 0 rec_vars = len([var for var in self.variables.values() if var.isrec]) if rec_vars > 1: vsize += -vsize % 4 self.variables[name].__dict__['_vsize'] = vsize self._pack_int(vsize) # Pack a bogus begin, and set the real value later. self.variables[name].__dict__['_begin'] = self.fp.tell() self._pack_begin(0) def _write_var_data(self, name): var = self.variables[name] # Set begin in file header. the_beguine = self.fp.tell() self.fp.seek(var._begin) self._pack_begin(the_beguine) self.fp.seek(the_beguine) # Write data. if not var.isrec: self.fp.write(var.data.tostring()) count = var.data.size * var.data.itemsize self.fp.write(asbytes('0') * (var._vsize - count)) else: # record variable # Handle rec vars with shape[0] < nrecs. if self._recs > len(var.data): shape = (self._recs,) + var.data.shape[1:] var.data.resize(shape) pos0 = pos = self.fp.tell() for rec in var.data: # Apparently scalars cannot be converted to big endian. If we # try to convert a ``=i4`` scalar to, say, '>i4' the dtype # will remain as ``=i4``. if not rec.shape and (rec.dtype.byteorder == '<' or (rec.dtype.byteorder == '=' and LITTLE_ENDIAN)): rec = rec.byteswap() self.fp.write(rec.tostring()) # Padding count = rec.size * rec.itemsize self.fp.write(asbytes('0') * (var._vsize - count)) pos += self._recsize self.fp.seek(pos) self.fp.seek(pos0 + var._vsize) def _write_values(self, values): if hasattr(values, 'dtype'): nc_type = REVERSE[values.dtype.char, values.dtype.itemsize] else: types = [ (int, NC_INT), (long, NC_INT), (float, NC_FLOAT), (basestring, NC_CHAR), ] try: sample = values[0] except TypeError: sample = values for class_, nc_type in types: if isinstance(sample, class_): break typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode values = asarray(values, dtype=dtype_) self.fp.write(asbytes(nc_type)) if values.dtype.char == 'S': nelems = values.itemsize else: nelems = values.size self._pack_int(nelems) if not values.shape and (values.dtype.byteorder == '<' or (values.dtype.byteorder == '=' and LITTLE_ENDIAN)): values = values.byteswap() self.fp.write(values.tostring()) count = values.size * values.itemsize self.fp.write(asbytes('0') * (-count % 4)) # pad def _read(self): # Check magic bytes and version magic = self.fp.read(3) if not magic == asbytes('CDF'): raise TypeError("Error: %s is not a valid NetCDF 3 file" % self.filename) self.__dict__['version_byte'] = fromstring(self.fp.read(1), '>b')[0] # Read file headers and set data. self._read_numrecs() self._read_dim_array() self._read_gatt_array() self._read_var_array() def _read_numrecs(self): self.__dict__['_recs'] = self._unpack_int() def _read_dim_array(self): header = self.fp.read(4) if not header in [ZERO, NC_DIMENSION]: raise ValueError("Unexpected header.") count = self._unpack_int() for dim in range(count): name = asstr(self._unpack_string()) length = self._unpack_int() or None # None for record dimension self.dimensions[name] = length self._dims.append(name) # preserve order def _read_gatt_array(self): for k, v in self._read_att_array().items(): self.__setattr__(k, v) def _read_att_array(self): header = self.fp.read(4) if not header in [ZERO, NC_ATTRIBUTE]: raise ValueError("Unexpected header.") count = self._unpack_int() attributes = {} for attr in range(count): name = asstr(self._unpack_string()) attributes[name] = self._read_values() return attributes def _read_var_array(self): header = self.fp.read(4) if not header in [ZERO, NC_VARIABLE]: raise ValueError("Unexpected header.") begin = 0 dtypes = {'names': [], 'formats': []} rec_vars = [] count = self._unpack_int() for var in range(count): (name, dimensions, shape, attributes, typecode, size, dtype_, begin_, vsize) = self._read_var() # http://www.unidata.ucar.edu/software/netcdf/docs/netcdf.html # Note that vsize is the product of the dimension lengths # (omitting the record dimension) and the number of bytes # per value (determined from the type), increased to the # next multiple of 4, for each variable. If a record # variable, this is the amount of space per record. The # netCDF "record size" is calculated as the sum of the # vsize's of all the record variables. # # The vsize field is actually redundant, because its value # may be computed from other information in the header. The # 32-bit vsize field is not large enough to contain the size # of variables that require more than 2^32 - 4 bytes, so # 2^32 - 1 is used in the vsize field for such variables. if shape and shape[0] is None: # record variable rec_vars.append(name) # The netCDF "record size" is calculated as the sum of # the vsize's of all the record variables. self.__dict__['_recsize'] += vsize if begin == 0: begin = begin_ dtypes['names'].append(name) dtypes['formats'].append(str(shape[1:]) + dtype_) # Handle padding with a virtual variable. if typecode in 'bch': actual_size = reduce(mul, (1,) + shape[1:]) * size padding = -actual_size % 4 if padding: dtypes['names'].append('_padding_%d' % var) dtypes['formats'].append('(%d,)>b' % padding) # Data will be set later. data = None else: # not a record variable # Calculate size to avoid problems with vsize (above) a_size = reduce(mul, shape, 1) * size if self.use_mmap: mm = mmap(self.fp.fileno(), begin_+a_size, access=ACCESS_READ) data = ndarray.__new__(ndarray, shape, dtype=dtype_, buffer=mm, offset=begin_, order=0) else: pos = self.fp.tell() self.fp.seek(begin_) data = fromstring(self.fp.read(a_size), dtype=dtype_) data.shape = shape self.fp.seek(pos) # Add variable. self.variables[name] = netcdf_variable( data, typecode, size, shape, dimensions, attributes) if rec_vars: # Remove padding when only one record variable. if len(rec_vars) == 1: dtypes['names'] = dtypes['names'][:1] dtypes['formats'] = dtypes['formats'][:1] # Build rec array. if self.use_mmap: mm = mmap(self.fp.fileno(), begin+self._recs*self._recsize, access=ACCESS_READ) rec_array = ndarray.__new__(ndarray, (self._recs,), dtype=dtypes, buffer=mm, offset=begin, order=0) else: pos = self.fp.tell() self.fp.seek(begin) rec_array = fromstring(self.fp.read(self._recs*self._recsize), dtype=dtypes) rec_array.shape = (self._recs,) self.fp.seek(pos) for var in rec_vars: self.variables[var].__dict__['data'] = rec_array[var] def _read_var(self): name = asstr(self._unpack_string()) dimensions = [] shape = [] dims = self._unpack_int() for i in range(dims): dimid = self._unpack_int() dimname = self._dims[dimid] dimensions.append(dimname) dim = self.dimensions[dimname] shape.append(dim) dimensions = tuple(dimensions) shape = tuple(shape) attributes = self._read_att_array() nc_type = self.fp.read(4) vsize = self._unpack_int() begin = [self._unpack_int, self._unpack_int64][self.version_byte-1]() typecode, size = TYPEMAP[nc_type] dtype_ = '>%s' % typecode return name, dimensions, shape, attributes, typecode, size, dtype_, begin, vsize def _read_values(self): nc_type = self.fp.read(4) n = self._unpack_int() typecode, size = TYPEMAP[nc_type] count = n*size values = self.fp.read(int(count)) self.fp.read(-count % 4) # read padding if typecode is not 'c': values = fromstring(values, dtype='>%s' % typecode) if values.shape == (1,): values = values[0] else: values = values.rstrip(asbytes('\x00')) return values def _pack_begin(self, begin): if self.version_byte == 1: self._pack_int(begin) elif self.version_byte == 2: self._pack_int64(begin) def _pack_int(self, value): self.fp.write(array(value, '>i').tostring()) _pack_int32 = _pack_int def _unpack_int(self): return int(fromstring(self.fp.read(4), '>i')[0]) _unpack_int32 = _unpack_int def _pack_int64(self, value): self.fp.write(array(value, '>q').tostring()) def _unpack_int64(self): return fromstring(self.fp.read(8), '>q')[0] def _pack_string(self, s): count = len(s) self._pack_int(count) self.fp.write(asbytes(s)) self.fp.write(asbytes('0') * (-count % 4)) # pad def _unpack_string(self): count = self._unpack_int() s = self.fp.read(count).rstrip(asbytes('\x00')) self.fp.read(-count % 4) # read padding return s class netcdf_variable(object): """ A data object for the `netcdf` module. `netcdf_variable` objects are constructed by calling the method `netcdf_file.createVariable` on the `netcdf_file` object. `netcdf_variable` objects behave much like array objects defined in numpy, except that their data resides in a file. Data is read by indexing and written by assigning to an indexed subset; the entire array can be accessed by the index ``[:]`` or (for scalars) by using the methods `getValue` and `assignValue`. `netcdf_variable` objects also have attribute `shape` with the same meaning as for arrays, but the shape cannot be modified. There is another read-only attribute `dimensions`, whose value is the tuple of dimension names. All other attributes correspond to variable attributes defined in the NetCDF file. Variable attributes are created by assigning to an attribute of the `netcdf_variable` object. Parameters ---------- data : array_like The data array that holds the values for the variable. Typically, this is initialized as empty, but with the proper shape. typecode : dtype character code Desired data-type for the data array. size : int Desired element size for the data array. shape : sequence of ints The shape of the array. This should match the lengths of the variable's dimensions. dimensions : sequence of strings The names of the dimensions used by the variable. Must be in the same order of the dimension lengths given by `shape`. attributes : dict, optional Attribute values (any type) keyed by string names. These attributes become attributes for the netcdf_variable object. Attributes ---------- dimensions : list of str List of names of dimensions used by the variable object. isrec, shape Properties See also -------- isrec, shape """ def __init__(self, data, typecode, size, shape, dimensions, attributes=None): self.data = data self._typecode = typecode self._size = size self._shape = shape self.dimensions = dimensions self._attributes = attributes or {} for k, v in self._attributes.items(): self.__dict__[k] = v def __setattr__(self, attr, value): # Store user defined attributes in a separate dict, # so we can save them to file later. try: self._attributes[attr] = value except AttributeError: pass self.__dict__[attr] = value def isrec(self): """Returns whether the variable has a record dimension or not. A record dimension is a dimension along which additional data could be easily appended in the netcdf data structure without much rewriting of the data file. This attribute is a read-only property of the `netcdf_variable`. """ return self.data.shape and not self._shape[0] isrec = property(isrec) def shape(self): """Returns the shape tuple of the data variable. This is a read-only attribute and can not be modified in the same manner of other numpy arrays. """ return self.data.shape shape = property(shape) def getValue(self): """ Retrieve a scalar value from a `netcdf_variable` of length one. Raises ------ ValueError If the netcdf variable is an array of length greater than one, this exception will be raised. """ return self.data.item() def assignValue(self, value): """ Assign a scalar value to a `netcdf_variable` of length one. Parameters ---------- value : scalar Scalar value (of compatible type) to assign to a length-one netcdf variable. This value will be written to file. Raises ------ ValueError If the input is not a scalar, or if the destination is not a length-one netcdf variable. """ if not self.data.flags.writeable: # Work-around for a bug in NumPy. Calling itemset() on a read-only # memory-mapped array causes a seg. fault. # See NumPy ticket #1622, and SciPy ticket #1202. # This check for `writeable` can be removed when the oldest version # of numpy still supported by scipy contains the fix for #1622. raise RuntimeError("variable is not writeable") self.data.itemset(value) def typecode(self): """ Return the typecode of the variable. Returns ------- typecode : char The character typecode of the variable (eg, 'i' for int). """ return self._typecode def itemsize(self): """ Return the itemsize of the variable. Returns ------- itemsize : int The element size of the variable (eg, 8 for float64). """ return self._size def __getitem__(self, index): return self.data[index] def __setitem__(self, index, data): # Expand data for record vars? if self.isrec: if isinstance(index, tuple): rec_index = index[0] else: rec_index = index if isinstance(rec_index, slice): recs = (rec_index.start or 0) + len(data) else: recs = rec_index + 1 if recs > len(self.data): shape = (recs,) + self._shape[1:] self.data.resize(shape) self.data[index] = data NetCDFFile = netcdf_file NetCDFVariable = netcdf_variable