# # Author: Pearu Peterson, March 2002 # # additions by Travis Oliphant, March 2002 # additions by Eric Jones, June 2002 # additions by Johannes Loehnert, June 2006 # additions by Bart Vandereycken, June 2006 # additions by Andrew D Straw, May 2007 # additions by Tiziano Zito, November 2008 # # April 2010: Functions for LU, QR, SVD, Schur and Cholesky decompositions were # moved to their own files. Still in this file are functions for eigenstuff # and for the Hessenberg form. __all__ = ['eig','eigh','eig_banded','eigvals','eigvalsh', 'eigvals_banded', 'hessenberg'] import numpy from numpy import array, asarray_chkfinite, asarray, diag, zeros, ones, \ isfinite, inexact, nonzero, iscomplexobj, cast, flatnonzero, conj # Local imports from scipy.linalg import calc_lwork from misc import LinAlgError, _datacopied from lapack import get_lapack_funcs from blas import get_blas_funcs _I = cast['F'](1j) def _make_complex_eigvecs(w, vin, dtype): """ Produce complex-valued eigenvectors from LAPACK DGGEV real-valued output """ # - see LAPACK man page DGGEV at ALPHAI v = numpy.array(vin, dtype=dtype) m = (w.imag > 0) m[:-1] |= (w.imag[1:] < 0) # workaround for LAPACK bug, cf. ticket #709 for i in flatnonzero(m): v.imag[:,i] = vin[:,i+1] conj(v[:,i], v[:,i+1]) return v def _geneig(a1, b1, left, right, overwrite_a, overwrite_b): ggev, = get_lapack_funcs(('ggev',), (a1, b1)) cvl, cvr = left, right if ggev.module_name[:7] == 'clapack': raise NotImplementedError('calling ggev from %s' % ggev.module_name) res = ggev(a1, b1, lwork=-1) lwork = res[-2][0].real.astype(numpy.int) if ggev.prefix in 'cz': alpha, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork, overwrite_a, overwrite_b) w = alpha / beta else: alphar, alphai, beta, vl, vr, work, info = ggev(a1, b1, cvl, cvr, lwork, overwrite_a,overwrite_b) w = (alphar + _I * alphai) / beta if info < 0: raise ValueError('illegal value in %d-th argument of internal ggev' % -info) if info > 0: raise LinAlgError("generalized eig algorithm did not converge (info=%d)" % info) only_real = numpy.logical_and.reduce(numpy.equal(w.imag, 0.0)) if not (ggev.prefix in 'cz' or only_real): t = w.dtype.char if left: vl = _make_complex_eigvecs(w, vl, t) if right: vr = _make_complex_eigvecs(w, vr, t) if not (left or right): return w if left: if right: return w, vl, vr return w, vl return w, vr def eig(a, b=None, left=False, right=True, overwrite_a=False, overwrite_b=False): """ Solve an ordinary or generalized eigenvalue problem of a square matrix. Find eigenvalues w and right or left eigenvectors of a general matrix:: a vr[:,i] = w[i] b vr[:,i] a.H vl[:,i] = w[i].conj() b.H vl[:,i] where ``.H`` is the Hermitian conjugation. Parameters ---------- a : array_like, shape (M, M) A complex or real matrix whose eigenvalues and eigenvectors will be computed. b : array_like, shape (M, M), optional Right-hand side matrix in a generalized eigenvalue problem. Default is None, identity matrix is assumed. left : bool, optional Whether to calculate and return left eigenvectors. Default is False. right : bool, optional Whether to calculate and return right eigenvectors. Default is True. overwrite_a : bool, optional Whether to overwrite `a`; may improve performance. Default is False. overwrite_b : bool, optional Whether to overwrite `b`; may improve performance. Default is False. Returns ------- w : double or complex ndarray The eigenvalues, each repeated according to its multiplicity. Of shape (M,). vl : double or complex ndarray The normalized left eigenvector corresponding to the eigenvalue ``w[i]`` is the column v[:,i]. Only returned if ``left=True``. Of shape ``(M, M)``. vr : double or complex array The normalized right eigenvector corresponding to the eigenvalue ``w[i]`` is the column ``vr[:,i]``. Only returned if ``right=True``. Of shape ``(M, M)``. Raises ------ LinAlgError If eigenvalue computation does not converge. See Also -------- eigh : Eigenvalues and right eigenvectors for symmetric/Hermitian arrays. """ a1 = asarray_chkfinite(a) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or (_datacopied(a1, a)) if b is not None: b1 = asarray_chkfinite(b) overwrite_b = overwrite_b or _datacopied(b1, b) if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]: raise ValueError('expected square matrix') if b1.shape != a1.shape: raise ValueError('a and b must have the same shape') return _geneig(a1, b1, left, right, overwrite_a, overwrite_b) geev, = get_lapack_funcs(('geev',), (a1,)) compute_vl, compute_vr = left, right if geev.module_name[:7] == 'flapack': lwork = calc_lwork.geev(geev.prefix, a1.shape[0], compute_vl, compute_vr)[1] if geev.prefix in 'cz': w, vl, vr, info = geev(a1, lwork=lwork, compute_vl=compute_vl, compute_vr=compute_vr, overwrite_a=overwrite_a) else: wr, wi, vl, vr, info = geev(a1, lwork=lwork, compute_vl=compute_vl, compute_vr=compute_vr, overwrite_a=overwrite_a) t = {'f':'F','d':'D'}[wr.dtype.char] w = wr + _I * wi else: # 'clapack' if geev.prefix in 'cz': w, vl, vr, info = geev(a1, compute_vl=compute_vl, compute_vr=compute_vr, overwrite_a=overwrite_a) else: wr, wi, vl, vr, info = geev(a1, compute_vl=compute_vl, compute_vr=compute_vr, overwrite_a=overwrite_a) t = {'f':'F','d':'D'}[wr.dtype.char] w = wr + _I * wi if info < 0: raise ValueError('illegal value in %d-th argument of internal geev' % -info) if info > 0: raise LinAlgError("eig algorithm did not converge (only eigenvalues " "with order >= %d have converged)" % info) only_real = numpy.logical_and.reduce(numpy.equal(w.imag, 0.0)) if not (geev.prefix in 'cz' or only_real): t = w.dtype.char if left: vl = _make_complex_eigvecs(w, vl, t) if right: vr = _make_complex_eigvecs(w, vr, t) if not (left or right): return w if left: if right: return w, vl, vr return w, vl return w, vr def eigh(a, b=None, lower=True, eigvals_only=False, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1): """Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix. Find eigenvalues w and optionally eigenvectors v of matrix a, where b is positive definite:: a v[:,i] = w[i] b v[:,i] v[i,:].conj() a v[:,i] = w[i] v[i,:].conj() b v[:,i] = 1 Parameters ---------- a : array, shape (M, M) A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed. b : array, shape (M, M) A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) eigvals_only : boolean Whether to calculate only eigenvalues and no eigenvectors. (Default: both are calculated) turbo : boolean Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None) eigvals : tuple (lo, hi) Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and eigenvectors are returned. type: integer Specifies the problem type to be solved: type = 1: a v[:,i] = w[i] b v[:,i] type = 2: a b v[:,i] = w[i] v[:,i] type = 3: b a v[:,i] = w[i] v[:,i] overwrite_a : boolean Whether to overwrite data in a (may improve performance) overwrite_b : boolean Whether to overwrite data in b (may improve performance) Returns ------- w : real array, shape (N,) The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity. (if eigvals_only == False) v : complex array, shape (M, N) The normalized selected eigenvector corresponding to the eigenvalue w[i] is the column v[:,i]. Normalization: type 1 and 3: v.conj() a v = w type 2: inv(v).conj() a inv(v) = w type = 1 or 2: v.conj() b v = I type = 3 : v.conj() inv(b) v = I Raises LinAlgError if eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or hermitian, no error is reported but results will be wrong. See Also -------- eig : eigenvalues and right eigenvectors for non-symmetric arrays """ a1 = asarray_chkfinite(a) if len(a1.shape) != 2 or a1.shape[0] != a1.shape[1]: raise ValueError('expected square matrix') overwrite_a = overwrite_a or (_datacopied(a1, a)) if iscomplexobj(a1): cplx = True else: cplx = False if b is not None: b1 = asarray_chkfinite(b) overwrite_b = overwrite_b or _datacopied(b1, b) if len(b1.shape) != 2 or b1.shape[0] != b1.shape[1]: raise ValueError('expected square matrix') if b1.shape != a1.shape: raise ValueError("wrong b dimensions %s, should " "be %s" % (str(b1.shape), str(a1.shape))) if iscomplexobj(b1): cplx = True else: cplx = cplx or False else: b1 = None # Set job for fortran routines _job = (eigvals_only and 'N') or 'V' # port eigenvalue range from python to fortran convention if eigvals is not None: lo, hi = eigvals if lo < 0 or hi >= a1.shape[0]: raise ValueError('The eigenvalue range specified is not valid.\n' 'Valid range is [%s,%s]' % (0, a1.shape[0]-1)) lo += 1 hi += 1 eigvals = (lo, hi) # set lower if lower: uplo = 'L' else: uplo = 'U' # fix prefix for lapack routines if cplx: pfx = 'he' else: pfx = 'sy' # Standard Eigenvalue Problem # Use '*evr' routines # FIXME: implement calculation of optimal lwork # for all lapack routines if b1 is None: (evr,) = get_lapack_funcs((pfx+'evr',), (a1,)) if eigvals is None: w, v, info = evr(a1, uplo=uplo, jobz=_job, range="A", il=1, iu=a1.shape[0], overwrite_a=overwrite_a) else: (lo, hi)= eigvals w_tot, v, info = evr(a1, uplo=uplo, jobz=_job, range="I", il=lo, iu=hi, overwrite_a=overwrite_a) w = w_tot[0:hi-lo+1] # Generalized Eigenvalue Problem else: # Use '*gvx' routines if range is specified if eigvals is not None: (gvx,) = get_lapack_funcs((pfx+'gvx',), (a1,b1)) (lo, hi) = eigvals w_tot, v, ifail, info = gvx(a1, b1, uplo=uplo, iu=hi, itype=type,jobz=_job, il=lo, overwrite_a=overwrite_a, overwrite_b=overwrite_b) w = w_tot[0:hi-lo+1] # Use '*gvd' routine if turbo is on and no eigvals are specified elif turbo: (gvd,) = get_lapack_funcs((pfx+'gvd',), (a1,b1)) v, w, info = gvd(a1, b1, uplo=uplo, itype=type, jobz=_job, overwrite_a=overwrite_a, overwrite_b=overwrite_b) # Use '*gv' routine if turbo is off and no eigvals are specified else: (gv,) = get_lapack_funcs((pfx+'gv',), (a1,b1)) v, w, info = gv(a1, b1, uplo=uplo, itype= type, jobz=_job, overwrite_a=overwrite_a, overwrite_b=overwrite_b) # Check if we had a successful exit if info == 0: if eigvals_only: return w else: return w, v elif info < 0: raise LinAlgError("illegal value in %i-th argument of internal" " fortran routine." % (-info)) elif info > 0 and b1 is None: raise LinAlgError("unrecoverable internal error.") # The algorithm failed to converge. elif info > 0 and info <= b1.shape[0]: if eigvals is not None: raise LinAlgError("the eigenvectors %s failed to" " converge." % nonzero(ifail)-1) else: raise LinAlgError("internal fortran routine failed to converge: " "%i off-diagonal elements of an " "intermediate tridiagonal form did not converge" " to zero." % info) # This occurs when b is not positive definite else: raise LinAlgError("the leading minor of order %i" " of 'b' is not positive definite. The" " factorization of 'b' could not be completed" " and no eigenvalues or eigenvectors were" " computed." % (info-b1.shape[0])) def eig_banded(a_band, lower=False, eigvals_only=False, overwrite_a_band=False, select='a', select_range=None, max_ev = 0): """Solve real symmetric or complex hermitian band matrix eigenvalue problem. Find eigenvalues w and optionally right eigenvectors v of a:: a v[:,i] = w[i] v[:,i] v.H v = identity The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form: a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j) where u is the number of bands above the diagonal. Example of a_band (shape of a is (6,6), u=2):: upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Cells marked with * are not used. Parameters ---------- a_band : array, shape (u+1, M) The bands of the M by M matrix a. lower : boolean Is the matrix in the lower form. (Default is upper form) eigvals_only : boolean Compute only the eigenvalues and no eigenvectors. (Default: calculate also eigenvectors) overwrite_a_band: Discard data in a_band (may enhance performance) select: {'a', 'v', 'i'} Which eigenvalues to calculate ====== ======================================== select calculated ====== ======================================== 'a' All eigenvalues 'v' Eigenvalues in the interval (min, max] 'i' Eigenvalues with indices min <= i <= max ====== ======================================== select_range : (min, max) Range of selected eigenvalues max_ev : integer For select=='v', maximum number of eigenvalues expected. For other values of select, has no meaning. In doubt, leave this parameter untouched. Returns ------- w : array, shape (M,) The eigenvalues, in ascending order, each repeated according to its multiplicity. v : double or complex double array, shape (M, M) The normalized eigenvector corresponding to the eigenvalue w[i] is the column v[:,i]. Raises LinAlgError if eigenvalue computation does not converge """ if eigvals_only or overwrite_a_band: a1 = asarray_chkfinite(a_band) overwrite_a_band = overwrite_a_band or (_datacopied(a1, a_band)) else: a1 = array(a_band) if issubclass(a1.dtype.type, inexact) and not isfinite(a1).all(): raise ValueError("array must not contain infs or NaNs") overwrite_a_band = 1 if len(a1.shape) != 2: raise ValueError('expected two-dimensional array') if select.lower() not in [0, 1, 2, 'a', 'v', 'i', 'all', 'value', 'index']: raise ValueError('invalid argument for select') if select.lower() in [0, 'a', 'all']: if a1.dtype.char in 'GFD': bevd, = get_lapack_funcs(('hbevd',), (a1,)) # FIXME: implement this somewhen, for now go with builtin values # FIXME: calc optimal lwork by calling ?hbevd(lwork=-1) # or by using calc_lwork.f ??? # lwork = calc_lwork.hbevd(bevd.prefix, a1.shape[0], lower) internal_name = 'hbevd' else: # a1.dtype.char in 'fd': bevd, = get_lapack_funcs(('sbevd',), (a1,)) # FIXME: implement this somewhen, for now go with builtin values # see above # lwork = calc_lwork.sbevd(bevd.prefix, a1.shape[0], lower) internal_name = 'sbevd' w,v,info = bevd(a1, compute_v=not eigvals_only, lower=lower, overwrite_ab=overwrite_a_band) if select.lower() in [1, 2, 'i', 'v', 'index', 'value']: # calculate certain range only if select.lower() in [2, 'i', 'index']: select = 2 vl, vu, il, iu = 0.0, 0.0, min(select_range), max(select_range) if min(il, iu) < 0 or max(il, iu) >= a1.shape[1]: raise ValueError('select_range out of bounds') max_ev = iu - il + 1 else: # 1, 'v', 'value' select = 1 vl, vu, il, iu = min(select_range), max(select_range), 0, 0 if max_ev == 0: max_ev = a_band.shape[1] if eigvals_only: max_ev = 1 # calculate optimal abstol for dsbevx (see manpage) if a1.dtype.char in 'fF': # single precision lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='f'),)) else: lamch, = get_lapack_funcs(('lamch',), (array(0, dtype='d'),)) abstol = 2 * lamch('s') if a1.dtype.char in 'GFD': bevx, = get_lapack_funcs(('hbevx',), (a1,)) internal_name = 'hbevx' else: # a1.dtype.char in 'gfd' bevx, = get_lapack_funcs(('sbevx',), (a1,)) internal_name = 'sbevx' # il+1, iu+1: translate python indexing (0 ... N-1) into Fortran # indexing (1 ... N) w, v, m, ifail, info = bevx(a1, vl, vu, il+1, iu+1, compute_v=not eigvals_only, mmax=max_ev, range=select, lower=lower, overwrite_ab=overwrite_a_band, abstol=abstol) # crop off w and v w = w[:m] if not eigvals_only: v = v[:, :m] if info < 0: raise ValueError('illegal value in %d-th argument of internal %s' % (-info, internal_name)) if info > 0: raise LinAlgError("eig algorithm did not converge") if eigvals_only: return w return w, v def eigvals(a, b=None, overwrite_a=False): """ Compute eigenvalues from an ordinary or generalized eigenvalue problem. Find eigenvalues of a general matrix:: a vr[:,i] = w[i] b vr[:,i] Parameters ---------- a : array_like, shape (M, M) A complex or real matrix whose eigenvalues and eigenvectors will be computed. b : array_like, shape (M, M), optional Right-hand side matrix in a generalized eigenvalue problem. If omitted, identity matrix is assumed. overwrite_a : boolean, optional Whether to overwrite data in a (may improve performance) Returns ------- w : double or complex ndarray, shape (M,) The eigenvalues, each repeated according to its multiplicity, but not in any specific order. Of shape (M,). Raises ------ LinAlgError If eigenvalue computation does not converge See Also -------- eigvalsh : eigenvalues of symmetric or Hermitian arrays, eig : eigenvalues and right eigenvectors of general arrays. eigh : eigenvalues and eigenvectors of symmetric/Hermitian arrays. """ return eig(a, b=b, left=0, right=0, overwrite_a=overwrite_a) def eigvalsh(a, b=None, lower=True, overwrite_a=False, overwrite_b=False, turbo=True, eigvals=None, type=1): """Solve an ordinary or generalized eigenvalue problem for a complex Hermitian or real symmetric matrix. Find eigenvalues w of matrix a, where b is positive definite:: a v[:,i] = w[i] b v[:,i] v[i,:].conj() a v[:,i] = w[i] v[i,:].conj() b v[:,i] = 1 Parameters ---------- a : array, shape (M, M) A complex Hermitian or real symmetric matrix whose eigenvalues and eigenvectors will be computed. b : array, shape (M, M) A complex Hermitian or real symmetric definite positive matrix in. If omitted, identity matrix is assumed. lower : boolean Whether the pertinent array data is taken from the lower or upper triangle of a. (Default: lower) turbo : boolean Use divide and conquer algorithm (faster but expensive in memory, only for generalized eigenvalue problem and if eigvals=None) eigvals : tuple (lo, hi) Indexes of the smallest and largest (in ascending order) eigenvalues and corresponding eigenvectors to be returned: 0 <= lo < hi <= M-1. If omitted, all eigenvalues and eigenvectors are returned. type: integer Specifies the problem type to be solved: type = 1: a v[:,i] = w[i] b v[:,i] type = 2: a b v[:,i] = w[i] v[:,i] type = 3: b a v[:,i] = w[i] v[:,i] overwrite_a : boolean Whether to overwrite data in a (may improve performance) overwrite_b : boolean Whether to overwrite data in b (may improve performance) Returns ------- w : real array, shape (N,) The N (1<=N<=M) selected eigenvalues, in ascending order, each repeated according to its multiplicity. Raises LinAlgError if eigenvalue computation does not converge, an error occurred, or b matrix is not definite positive. Note that if input matrices are not symmetric or hermitian, no error is reported but results will be wrong. See Also -------- eigvals : eigenvalues of general arrays eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays eig : eigenvalues and right eigenvectors for non-symmetric arrays """ return eigh(a, b=b, lower=lower, eigvals_only=True, overwrite_a=overwrite_a, overwrite_b=overwrite_b, turbo=turbo, eigvals=eigvals, type=type) def eigvals_banded(a_band, lower=False, overwrite_a_band=False, select='a', select_range=None): """Solve real symmetric or complex hermitian band matrix eigenvalue problem. Find eigenvalues w of a:: a v[:,i] = w[i] v[:,i] v.H v = identity The matrix a is stored in a_band either in lower diagonal or upper diagonal ordered form: a_band[u + i - j, j] == a[i,j] (if upper form; i <= j) a_band[ i - j, j] == a[i,j] (if lower form; i >= j) where u is the number of bands above the diagonal. Example of a_band (shape of a is (6,6), u=2):: upper form: * * a02 a13 a24 a35 * a01 a12 a23 a34 a45 a00 a11 a22 a33 a44 a55 lower form: a00 a11 a22 a33 a44 a55 a10 a21 a32 a43 a54 * a20 a31 a42 a53 * * Cells marked with * are not used. Parameters ---------- a_band : array, shape (u+1, M) The bands of the M by M matrix a. lower : boolean Is the matrix in the lower form. (Default is upper form) overwrite_a_band: Discard data in a_band (may enhance performance) select: {'a', 'v', 'i'} Which eigenvalues to calculate ====== ======================================== select calculated ====== ======================================== 'a' All eigenvalues 'v' Eigenvalues in the interval (min, max] 'i' Eigenvalues with indices min <= i <= max ====== ======================================== select_range : (min, max) Range of selected eigenvalues Returns ------- w : array, shape (M,) The eigenvalues, in ascending order, each repeated according to its multiplicity. Raises LinAlgError if eigenvalue computation does not converge See Also -------- eig_banded : eigenvalues and right eigenvectors for symmetric/Hermitian band matrices eigvals : eigenvalues of general arrays eigh : eigenvalues and right eigenvectors for symmetric/Hermitian arrays eig : eigenvalues and right eigenvectors for non-symmetric arrays """ return eig_banded(a_band, lower=lower, eigvals_only=1, overwrite_a_band=overwrite_a_band, select=select, select_range=select_range) _double_precision = ['i','l','d'] def hessenberg(a, calc_q=False, overwrite_a=False): """ Compute Hessenberg form of a matrix. The Hessenberg decomposition is:: A = Q H Q^H where `Q` is unitary/orthogonal and `H` has only zero elements below the first sub-diagonal. Parameters ---------- a : ndarray Matrix to bring into Hessenberg form, of shape ``(M,M)``. calc_q : bool, optional Whether to compute the transformation matrix. Default is False. overwrite_a : bool, optional Whether to overwrite `a`; may improve performance. Default is False. Returns ------- H : ndarray Hessenberg form of `a`, of shape (M,M). Q : ndarray Unitary/orthogonal similarity transformation matrix ``A = Q H Q^H``. Only returned if ``calc_q=True``. Of shape (M,M). """ a1 = asarray(a) if len(a1.shape) != 2 or (a1.shape[0] != a1.shape[1]): raise ValueError('expected square matrix') overwrite_a = overwrite_a or (_datacopied(a1, a)) gehrd,gebal = get_lapack_funcs(('gehrd','gebal'), (a1,)) ba, lo, hi, pivscale, info = gebal(a1, permute=1, overwrite_a=overwrite_a) if info < 0: raise ValueError('illegal value in %d-th argument of internal gebal ' '(hessenberg)' % -info) n = len(a1) lwork = calc_lwork.gehrd(gehrd.prefix, n, lo, hi) hq, tau, info = gehrd(ba, lo=lo, hi=hi, lwork=lwork, overwrite_a=1) if info < 0: raise ValueError('illegal value in %d-th argument of internal gehrd ' '(hessenberg)' % -info) if not calc_q: for i in range(lo, hi): hq[i+2:hi+1, i] = 0.0 return hq # XXX: Use ORGHR routines to compute q. typecode = hq.dtype ger,gemm = get_blas_funcs(('ger','gemm'), dtype=typecode) q = None for i in range(lo, hi): if tau[i]==0.0: continue v = zeros(n, dtype=typecode) v[i+1] = 1.0 v[i+2:hi+1] = hq[i+2:hi+1, i] hq[i+2:hi+1, i] = 0.0 h = ger(-tau[i], v, v,a=diag(ones(n, dtype=typecode)), overwrite_a=1) if q is None: q = h else: q = gemm(1.0, q, h) if q is None: q = diag(ones(n, dtype=typecode)) return hq, q