"""Compressed Sparse Column matrix format""" __docformat__ = "restructuredtext en" __all__ = ['csc_matrix', 'isspmatrix_csc'] from warnings import warn import numpy as np from sparsetools import csc_tocsr from sputils import upcast, isintlike from compressed import _cs_matrix class csc_matrix(_cs_matrix): """ Compressed Sparse Column matrix This can be instantiated in several ways: csc_matrix(D) with a dense matrix or rank-2 ndarray D csc_matrix(S) with another sparse matrix S (equivalent to S.tocsc()) csc_matrix((M, N), [dtype]) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'. csc_matrix((data, ij), [shape=(M, N)]) where ``data`` and ``ij`` satisfy the relationship ``a[ij[0, k], ij[1, k]] = data[k]`` csc_matrix((data, indices, indptr), [shape=(M, N)]) is the standard CSC representation where the row indices for column i are stored in ``indices[indptr[i]:indptr[i+1]]`` and their corresponding values are stored in ``data[indptr[i]:indptr[i+1]]``. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays. Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of nonzero elements data Data array of the matrix indices CSC format index array indptr CSC format index pointer array has_sorted_indices Whether indices are sorted Notes ----- Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power. Advantages of the CSC format - efficient arithmetic operations CSC + CSC, CSC * CSC, etc. - efficient column slicing - fast matrix vector products (CSR, BSR may be faster) Disadvantages of the CSC format - slow row slicing operations (consider CSR) - changes to the sparsity structure are expensive (consider LIL or DOK) Examples -------- >>> from scipy.sparse import * >>> from scipy import * >>> csc_matrix( (3,4), dtype=int8 ).todense() matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8) >>> row = array([0,2,2,0,1,2]) >>> col = array([0,0,1,2,2,2]) >>> data = array([1,2,3,4,5,6]) >>> csc_matrix( (data,(row,col)), shape=(3,3) ).todense() matrix([[1, 0, 4], [0, 0, 5], [2, 3, 6]]) >>> indptr = array([0,2,3,6]) >>> indices = array([0,2,2,0,1,2]) >>> data = array([1,2,3,4,5,6]) >>> csc_matrix( (data,indices,indptr), shape=(3,3) ).todense() matrix([[1, 0, 4], [0, 0, 5], [2, 3, 6]]) """ def transpose(self, copy=False): from csr import csr_matrix M,N = self.shape return csr_matrix((self.data,self.indices,self.indptr),(N,M),copy=copy) def __iter__(self): csr = self.tocsr() for r in xrange(self.shape[0]): yield csr[r,:] def tocsc(self, copy=False): if copy: return self.copy() else: return self def tocsr(self): M,N = self.shape indptr = np.empty(M + 1, dtype=np.intc) indices = np.empty(self.nnz, dtype=np.intc) data = np.empty(self.nnz, dtype=upcast(self.dtype)) csc_tocsr(M, N, \ self.indptr, self.indices, self.data, \ indptr, indices, data) from csr import csr_matrix A = csr_matrix((data, indices, indptr), shape=self.shape) A.has_sorted_indices = True return A def __getitem__(self, key): # use CSR to implement fancy indexing if isinstance(key, tuple): row = key[0] col = key[1] if isintlike(row) or isinstance(row, slice): return self.T[col,row].T else: #[[1,2],??] or [[[1],[2]],??] if isintlike(col) or isinstance(col,slice): return self.T[col,row].T else: row = np.asarray(row, dtype=np.intc) col = np.asarray(col, dtype=np.intc) if len(row.shape) == 1: return self.T[col,row] elif len(row.shape) == 2: row = row.reshape(-1) col = col.reshape(-1,1) return self.T[col,row].T else: raise NotImplementedError('unsupported indexing') return self.T[col,row].T elif isintlike(key) or isinstance(key,slice): return self.T[:,key].T #[i] or [1:2] else: return self.T[:,key].T #[[1,2]] # these functions are used by the parent class (_cs_matrix) # to remove redudancy between csc_matrix and csr_matrix def _swap(self,x): """swap the members of x if this is a column-oriented matrix """ return (x[1],x[0]) def isspmatrix_csc(x): return isinstance(x, csc_matrix)