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Abstract

Copy number variation (CNV) has been implicated in gene expression changes, phenotypic variation
and increased risk for complex disease traits, so there is much motivation for the study of CNV and
the relationship between it and various phenotypic phenomenon. Presented here is the analysis of an
array comparative genomic hybridisation (aCGH) experiment that was carried out using representational
oligonucleotide microarray analysis (ROMA) to detect CNV in the mouse genome. The experiment used
the inbred mouse strain C57BL/6J as the reference strain, and seven other inbred mouse strains as the
test strains.

First, a literature review of existing methods for aCGH data analysis is given. Next, the ROMA data
is introduced, and interference in the ROMA data due to single nucleotide polymorphisms (SNPs) is
discussed. Then, a nonparametric thresholding method for CNV detection, which searches for runs of
probes whose log2 ratios lie above or below a set threshold (excursions), Excursion Finder (EF), is
presented; the method is novel because it integrates known SNP data for the eight strains with the ROMA
data. Results are presented: the putative CNVs located by EF are discussed and compared to the results
of another nonparametric method, SW-ARRAY (Price et al., 2005); and the relationship between CNVs
and quantitative trait loci (QTLs), and expression QTLs (eQTLs), which have been previously mapped
to the mouse genome, is analysed. At the end of the report a plan for the completion of this part of the
project is given, harder extensions to the work are proposed, and a long term goal for the development
of a Bayesian nonparametric segmentation method for high density sequence data is discussed.
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Chapter 1

Introduction

When a cell replicates its DNA several types of chromosomal changes can occur. Feuk et al. (2006)
give the following classifications and definitions of these structural changes. Some variants, involving
∼ 3 Mb or more, are large enough to be seen under a microscope, and include abnormal numbers of
chromosomes aneuploidies, chromosomal rearrangements, regions of chromosomes that vary in size or
morphology heteromorphisms and breaks or constrictions in chromosomes fragile sites. Other structural
variants involving much shorter segments of DNA, typically < 1 Kb, are detectable by PCR sequencing
and include insertions, deletions, duplications and inversions. Finally there are also structural variants,
between ∼ 1 Kb and 3 Mb in size, which are still submicroscopic but too large for detection by sequencing.
The development of array comparative genomic hybridisation (aCGH) technologies have enabled the
study of this type of variant. (Briefly, in aCGH probes that map to loci on the genome of interest are
printed on to slides and used as targets for hybridisation of fluorescent test and control DNA samples. The
dyes emit different wavelengths of light and the ratio of the intensity of the light emitted is measured
to detect differential abundance of sequences in the test and control samples. Lastly the ratios are
normalised and log2s transformed for input into downstream analysis of the data. See chapter 2 for
further details.)

Useful definitions of structural variants that are > 1 Kb are found in Feuk et al. (2006) and Molinaro
et al. (2002) and are summarised here. During cell replication, if a region of DNA fails to be replicated
then there is a deletion or loss at that locus. Alternatively a duplication or, more generally, a gain in copy
number can occur if a region is copied more than once (see figure 1.1). Together with insertions these
types of structural variants are termed copy number variants (CNVs). For brevity, in this remainder
of this report, gains in copy number variation will be termed gain CNVs, and losses in CNV will be
termed loss CNVs. The detection of loss and gain CNVs in the mouse genome is the primary focus of
this project. Examples of other structural variants > 1 Kb are: segmental duplications - a region of
DNA that has two or more 90% sequence identical copies per haploid genome; inversions - a segment of
DNA with a reverse orientation in comparison to the rest of the chromosome; translocations - in which
a region of DNA changes position in the genome.

CNVs have for a long time been known to be associated with many human diseases. For example several
developmental disorders, such as Down, Prader Willi and Angelman syndromes are caused by a deletion
or duplication of a chromosome or part of a chromosome. Additionally, cancer is known to be caused,
in part, by mutations in oncogenes and tumour suppressor genes. One such mutation that these genes
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are susceptible to is CNV, and this contributes to their change in expression levels between normal and
cancerous cells.

More recently Redon et al. (2006) conducted an aCGH study of global variation in the human genome
using the International HapMap DNA and cell-line collection (Consortium, 2005). As motivation for
their work the authors site many publications that have implicated CNVs in gene expression changes,
phenotypic variation and increased risk for complex disease traits. In the first part of the paper a
genome-wide map of CNV in the human genome is presented (the first of its kind), and CNV regions
(CNVR: a region which encompasses overlapping or adjacent CNVs) are reported to cover 12% of the
human genome. The authors find that CNVs are associated with segmental duplications, that there
are functional categories of genes that are either enriched or underrepresented in CNVs, and that there
are “numerous examples of possible relevance [of CNVs] to both Mendelian and complex diseases”.
Importantly the authors also find that single nucleotide polymorphism (SNP) genotype patterns are
perturbed by CNVs. Finally they report marked variation in CNV between populations.

Using the HapMap SNPs and the CNV map reported in Redon et al. (2006), Stranger et al. (2007) have
examined the separate and joint effects of SNPs and CNVs on gene expression phenotypes. The authors
report that both types of variation have an effect on gene expression, but that these effects are largely
mutually exclusive.

Thus there is much motivation for the study of CNV and the relationship between it and various phe-
notypic phenomenon.

1.1 Report summary

Presented here is the analysis of an aCGH experiment that was carried out using representational oligonu-
cleotide microarray analysis (ROMA) to detect CNV in the mouse genome. In ROMA representations
of a genome are made using PCR to amplify fragments of the genome previously made with a restriction

Figure 1.1: Gain and loss CNVs. Left: a gain (in this case duplication) CNVs depicted (courtesy of the
US National Library of Medicine). Right: a loss (deletion) CNV is shown (doctored image from the US
National Library of Medicine).
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endonuclease, and then the representation, rather than the whole genome, is hybridised to an array of
long oligonucleotide probes. The ROMA experiment was carried out on seven inbred mouse strains,
with an eighth inbred mouse strain as the reference. The seven mouse strains under analysis were A/J,
AKR/J, BALB/cJ, C3H/HeJ, CBA/J, DBA/2J and LP/J, and the reference was C57BL/6J.

The goal in the analysis of aCGH data is the automatic detection of CNV in the genome under inspection.
Therefore, in chapter 2, aCGH experimental methods are presented, and existing methods for their data
analysis are discussed.

As will be discussed in chapter 3, there is a lot of observed variance in the ROMA data, much more so
than in previous mouse bacterial artificial chromosomes(BAC) aCGH (Li et al. (2004), Snijders et al.
(2004)), human ROMA (Lucito et al., 2003) and mouse ROMA (Lakshmi et al., 2006) experiments.
Additionally the ROMA data are of a much higher density than that for which most bioinformatic
analytical methods have been designed for, and break the distributional assumption of normality that
most methods make. Thus existing techniques for locating CNV are not suitable for this data.

Furthermore, as discussed in section 3.4, a primary cause of the variance in the data is thought to be
SNPs. SNPs can cause unwanted variance in one of two ways. First, if there is a SNP in the binding
site of the restriction endonuclease then the corresponding fragment will be removed from the genome
representation, and will appear as a total deletion. Second, if there is a SNP in an array probe then
hybridisation will be reduced, but the amount by which this will occur is hard to predict.

Therefore a nonparametric thresholding method for CNV detection, which searches for runs of probes
whose log2 ratios lie above or below a set threshold (excursions), Excursion Finder, is presented in
chapter 4. The method is novel because it integrates known SNP data for the eight strains with the
ROMA data. Due to Wade et al. (2002), the inbred mouse genome is known to have a mosaic structure
such that if the genomes of two inbred strains are compared to one another they are found to consist of
large regions with either very low SNP rates (SNP matched) or very high SNP rates (SNP non-matched).
Therefore in the first part of the algorithm each test strain is compared to the reference strain to find their
SNP matched and non-matched regions. Next, with the aim of explaining that proportion of the variance
in the ROMA data which is due to SNPs, different thresholds are set for the ROMA data in the SNP
matched and non-matched regions, with higher thresholds in the non-matched regions accounting for the
extra variance observed in them. Finally, a permutation algorithm is used to assess the significance of
putative regions of CNV.

Excursion Finder highlights many CNVs. A selection of regions are currently being verified with other
methods (PCR, flourescent in situ hybridisation (FISH), multiplex ligation-dependent probe amplification
(MLPA, Schouten et al. (2002))). The results are not yet available, but will eventually enable the
assessment of the reliability of the method in terms of, for example, estimates of the false positive rate.

To help assess the reliability of the method before experimental verifications are available, the CNVs
found by Excursion Finder on different strains are compared to one another. In section 4.2, using
criteria similar to those given in Redon et al. (2006), CNVs are combined across strains to obtain CNV
sets (CNVSs) that combine overlapping or adjacent CNVs. The proportion of CNVs that form singleton
CNVSs gives initial, if rather strict, estimates of the false positive rates of discovery of loss and gain
CNVs.

In section 4.3 the CNVs found by Excursion Finder are compared to those obtained from an SW-
ARRAY (Price et al., 2005) analysis. SW-ARRAY is used for comparison firstly because it is the only
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nonparametric segmentation procedure that also provides a nonparametric test for significance, and
secondly because it too has been used to process very high density aCGH data (Redon et al. (2006),
Komura et al. (2006)). In terms of loss CNVs detected, SW-ARRAY finds fewer regions than Excursion
Finder, but the CNVs detected by SW-ARRAY cover a much larger percentage of the C57BL/6J genome
than those detected by Excursion Finder. Both methods find far fewer gain CNVs than loss CNVs, but
Excursion Finder finds more, both in number and in terms of percentage of genome covered by them.
This analysis is limited and only experimental verification of the extra regions found by Excursion Finder
can discern false positives in Excursion Finder from false negatives in SW-ARRAY.

Once CNVSs have been identified the next step, discussed in section 4.4, is to assess the association
between them and other regions of the mouse genome that are related to certain phenotypes. (The use
of CNVSs over CNVs has two advantages: first, they provide a simpler, coarse grained, input for the
downstream analysis; second it becomes easy to remove CNVs for which there is not a lot of evidence,
just by removing those which form small CNVSs).Using a genetically heterogeneous stock (HS) of mice
descended from the eight strains listed above, small effect quantitative trait loci (QTL) have previously
been fine-mapped to the C57BL/6J genome (Solberg et al. (2006), Valdar et al. (2006a), Valdar et al.
(2006b)). The phenotypes that were studied are of relevance to human health and target three diseases:
anxiety, type II diabetes and asthma. A permutation test has been developed to test the association
between regions of CNV and QTL. At the moment, the results show little association between QTLs
and CNVs.

Finally, treating gene expression as a phenotype, expression QTLs (eQTLs) have also been identified
for the HS mice and mapped to C57BL/6J (data not yet published). In section 4.5 the hypothesis that
eQTLs are not enriched in CNVs, with the alternative that they are, is tested. Significant evidence
is found to reject the null hypothesis of no enrichment, so there is reason to believe that there is a
relationship between CNVs and eQTLS.

In chapter 5 future work is discussed. A plan for the completion of this part of the project is given,
harder extensions to the work are proposed, and a long term goal for the development of a Bayesian
nonparametric segmentation method for high density, high variance, sequence data is presented.
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Chapter 2

Background

2.1 Chromosomal comparative genomic hybridisation

Comparative Genomic Hybridisation (CGH) is a method for detecting and mapping deletions, dupli-
cations and translocations within the genome. Initially fluorescence in situ hybridisation (FISH) was
used with intact chromosomes as the hybridisation targets to map gains and losses of DNA copy num-
ber. Briefly, test and control DNAs labelled with different fluorescent dyes are applied to metaphase
chromosomes. Next, laser beams that correspond to the excitation wavelength of the dyes are shone
onto the chromosomes. The dyes then emit different wavelengths of light and the ratio of the intensity
of the light emitted is measured to detect differential abundance of sequences in the test and control
samples. The main shortfalls of this method are its low resolution (it is estimated to have a lower limit
of ∼ 5Mb), thus only enabling the detection of comparatively large gains or losses, and that it provides
little information regarding the locations of the ends of the diversified regions. ((Molinaro et al., 2002),
(Lupski and White)).

2.2 Array comparative genomic hybridisation

In array comparative genomic hybridisation (aCGH), instead of using chromosomes, probes that map to
loci on the genome are printed on to slides and used as targets for the hybridisation of the fluorescent
DNA samples. BACs, cDNAs, PCR products and oligonucleotides can all be used as array probes. (See
Box 2.1 for an outline of the aCGH method).

This method has afforded several improvements over chromosome CGH, including higher resolution,
direct mapping of abnormalities to the genome sequence and, because aCGH enables a genome-wide
analysis of DNA sequence copy number in a single experiment, higher throughput. However aCGH
cannot highlight ploidy (the number of single sets of chromosomes in a cell or organism) or location of
the rearranged sequences that have caused the CNV. Moreover, the resolution of aCGH is dependent
upon both the size and the spacing of the probes on the array. ((Molinaro et al., 2002), (Albertson and
Pinkel, 2003)).
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Method
1. A region of the genome is chosen to investigate for CNV. This can be a

part of the genome or the whole genome.
2. Probes for loci in the chosen part of the genome are either made and then

placed on to glass plates or, as is recently more common, are synthesised
in situ with the plates. (This is the microarray).

3. Genomic material from a test and control samples are labelled with dif-
ferent fluorochromes. The fluorochromes are completely distinguishable
with no spectral overlap.

4. The samples are hybridised with the array, and the array is washed to
remove any DNA that has not hybridised.

5. It is now possible to quantify the signal intensities of the fluorochromes.
Typically this is done by adjusting for background signal intensity, aver-
aging ratios for any replicate probes, and normalising signals within and
across slides to account for experimental variability.

6. Once the ratios are calculated probes with no ratio are either removed or
a signal is imputed for them, and a log transform is taken.

7. The data is then examined to find CNV.

Box 2.1: Outline of the array CGH method (Molinaro et al., 2002)

2.2.1 BAC aCGH

BAC aCGH was one of the first implementations of aCGH and is popular because it provides extensive
genome coverage, with reliable mapping data and readily available probes (the BACs). BAC arrays
usually have approximately 3000 probes, although sometimes they can have an order of magnitude more.
The size of the probes on BAC arrays is usually 150 to 200 kb, which is a limiting factor in the resolution
of smaller CNVs.

2.2.2 Long oligonucleotide aCGH

Long oligonucleotide (60-100 bp) arrays provide a denser coverage of the genome than that achieved by
BAC arrays and also improve the detection resolution (30 to 50 kb). Such arrays were first implemented
in an assay format known as representational oligonucleotide microarray analysis (ROMA) Lucito et al.
(2003).

In ROMA representations of a genome are made using PCR to amplify fragments of the genome previously
made with a restriction endonuclease. Because PCR selects short fragments, and because the cleavage site
of the restriction enzyme is known, the resulting set of representations are short fragments of DNA that
are both predictable from the genome sequence and also reproducible. Since the set of representations
are predictable it is possible to design oligonucleotide probes that will hybridise to the representations
and that will have a minimal amount of sequence overlap with the rest of the genome. The probes
can then be mapped computationally to the genome of interest. Furthermore, because representations
reduce the complexity of samples in a repeatable fashion, the signal to noise ratio is increased during
hybridisation to array probes. Lastly, by using a representation of genome from which a known subset
of fragment representations have been removed, it is possible to assess the non-specific hybridisation to
probes and hence to calibrate each of the probes on the oligonucleotide array according to performance.
This is much harder to do with BAC arrays.
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This report describes the analysis of a ROMA experiment that was carried out to detect novel loci of
CNV in inbred mouse strains (figure 2.2 and chapter 3). The experiment, which used 216457 probes, is
at least an order of magnitude more dense than all BAC arrays, and is typical of a new generation of
very high throughput arrays.

Other non-representational long oligonucleotide arrays have been developed by companies such as Nim-
bleGen and Agilent (Barrett et al. (2004)). A mouse long oligonucleotide whole genome tiling path
(WGTP) CGH array, made by NimbleGen and containing 388, 852 probes, has been used by Graubert
et al. (2007) to construct a very high resolution map of CNV and segmental duplication in the mouse
genome. Integration of this data set with the ROMA data analysed here will be explored in future work.

2.2.3 SNP arrays

Another array CGH approach is to use hybridisation signal intensities from SNP arrays. In this method
the signal intensities are compared to average values obtained from control experiments, and differences
from the average signal indicate a change in copy number. The advantage of using SNP arrays is that
they provide genotype data simultaneously with the CNV data. Redon et al. (2006) used both a SNP
array (GeneChip 500K Early Access array), and a BAC-WGTP array (26, 574 probes) to ascertain the
extent and effect of global CNV in the human genome.

2.3 Analysing aCGH data

The data generated by the high throughput aCGH methods described in the previous section have
motivated the development of many algorithms for their automated analysis and subsequent identification
of CNV. All of the methods reviewed here assume input aCGH data that consist of normalised log2 ratios
from test vs control samples, indexed by the physical location of the array probes on the genome. Based

Figure 2.2: Log2 ratios from the ROMA experiment for mouse strain A/J versus the reference C57BL/6J.
There are 209930/216457 probes across the genome for which a signal was obtained in this experiment.
Log2 ratios are plotted against probe indices rather than physical probe locations. Chromosomes are
plotted alternately in blue and green for clarity.
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on their primary objective most methods can be classified as smoothing, segmentation or thresholding.
Another group of methods more informatively grouped by their underlying probabilistic structure are
those based on Hidden Markov models (HMMs); importantly, this structure enables HMMs to borrow
inferential strength from across the data set in a way that other current methods cannot (see section
2.7 for further discussion). These four categories will be explored here. Lastly a new method, presented
by Price et al. (2005), which is better suited to very high throughput aCGH data, and which provides
significance ranking for highlighted CNVs (a function not afforded by any other method) will also be
discussed.

2.4 Smoothing

Smoothing algorithms work on the principal that plots of aCGH data often show regions of constant
copy number with abrupt jumps between them, and that they often contain a lot of noise. The primary
objective of smoothing algorithms is to provide a visual aid to interpreting the data, and this is achieved
by fitting a curve to the data in a process that can handle the sharp transitions. Although these
methods do not automatically identify and classify regions of CNV, they do provide an intuitive start
to the analytical process. Furthermore, if the smoothing methods are nonparametric then there is no
need for the user to provide any input except for the normalised aCGH data. In other words ad hoc
pre-processing steps are reduced. Two nonparametric smoothing algorithms are discussed here, quantile
smoothing (Eilers and de Menezes, 2004), and wavelet denoising (Hsu et al., 2005).

2.4.1 Quantile smoothing of aCGH data

Given a series y of n aCGH data points, Eilers and de Menezes (2004) initially attempt to smooth y

by minimising the following objective function, proposed by Whittaker (1923), in which z is the smooth
series that approximates y:

Q2 =
n∑

i=1

(yi − zi)2 + λ

n∑
i=2

(zi − zi−1)2 (2.1)

When eq.(2.1) is minimised the first term encourages a close fit of z to y, while the second term, tuned
by λ, discourages changes in z.

The authors report that this algorithm is not a good choice for aCGH data because “it converts jumps
into gradual changes and tends to round plateaus”. Thus they move to the L1 norm and minimise instead
the following objective function, with y, n and z as above:

Q1 =
n∑

i=1

|yi − zi|+ λ

n∑
i=2

|zi − zi−1| (2.2)

Minimisation of eq.(2.2) is reported to yield the desired results, with the smoothed data incorporating
the “sudden jumps and flat plateaus” expected to be characteristic of aCGH data. However, as the
authors explain, while eq.(2.1) leads to a simple linear system of equations, minimisation of eq.(2.2) is
harder; so to do this quantile regression is introduced.
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In quantile regression (Koenker and Basset, 1984), given a vector x, a regression basis B, m regression
coefficients α and a parameter τ that takes values between 0 an 1, the problem is to minimise:

S =
n∑

i=1

ρτ

(
xi −

m∑
j=1

bijαj

)
(2.3)

where

ρτ (u) =

{
τu if u > 0
(τ − 1)u if u ≤ 0

(2.4)

The effect of eq.(2.4) in eq.(2.3) is to return weighted absolute values of residuals, with the weight
dependent on the original sign of the residuals; positive residuals have weight τ while negative residuals
are weighted 1− τ . However, when τ = 0.5 all absolute residual values receive the same weighting, 0.5,
so the weights become independent of sign. This version of the quantile regression problem is termed the
median regression problem, and this is the problem solved by Eilers and de Menezes (2004) for smoothing
aCGH data.

Looking at the right hand side of eq.(2.2) as a single summation of 2n− 1 absolute values of terms that
are functions of y and λ, it becomes possible to re-write eq.(2.2) into the median regression problem.
This is done by letting:

• y, n, z and λ be defined as above

• I be the n x m identity matrix

• 0 be a vector of n− 1 zeros

• D be a matrix such that Dz = ∆z. (So D is the (n − 1) x n matrix that transforms z into the
vector of differences of neighbouring elements in z.)

then y∗ and B are constructed as:

y∗ =
(
y

0

)
and B =

(
I

λD

)
(2.5)

Next, replacing x with y∗ and setting τ to 0.5 in eq.(2.3), Eilers and de Menezes (2004) use the lin-
ear programming methods described in Portnoy and Koenker (1997) to minimise S =

∑2n−1
i=1 ρ0.5

(
y ∗i

−
∑n

j=1 bijαj

)
, and hence find the smoothed data series z that is equivalent to the regression coefficients

α.

Eilers and de Menezes (2004) test quantile smoothing on a subset of data from a BAC aCGH experiment
presented by Nakao et al. (2004) that tests 125 samples of colon carcinomas for CNV on BAC arrays
with 2120 probes spaced at ∼ 1.5 Mb; specifically the test data is that obtained from chromosome 1,
which involves 133 probes. They show that their method is useful for detecting both large continuous
blocks of CNV and also local changes involving only a few probes. The tool is positioned primarily for
visualisation and exploration of aCGH data, and as such the user is expected to segment the data by
eye once it has been smoothed, or to use the smoothed data in down stream automated analyses. In this
regard the method represents a reduction in functionality in comparison to the thresholding methods,
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but its nonparametric nature, (in median smoothing the only parameter τ is set to 0.5), makes it easier
to use for the less statistical user and also yields a simple interpretation of the output.

2.4.2 Denoising aCGH data using wavelets

A wavelet is a function that is compactly supported and has an average value of zero. Wavelet analysis
breaks a signal down into a series of wavelets that are scaled and shifted versions of a specified “mother
wavelet”. In this sense wavelet analysis is similar to a Fourier transform that breaks a signal down into a
series of sine waves of different frequencies, but where as the Fourier transform only provides information
about the frequency domain, wavelets enable the simultaneous acquisition of an association between the
space (or time) and frequency domains of a signal. Additionally, a mother wavelet can be chosen such
that it is good for analysing signals with sharp edges or discontinuity. This is in contrast to a Fourier
transform that is restricted to the use of smooth sine waves.

Hsu et al. (2005) propose a wavelet based method to smooth aCGH data prior to any statistical analyses
of, and further inferences on, patterns of CNV in the data. They explain that nonparametric techniques
are particularly suitable for data smoothing as they do not impose a parametric model for structures
in the data. Furthermore, wavelets are cited as particularly useful due to their ability to handle abrupt
changes seen in the data.

Denoting yi to be the observed copy number change at the i-th genomic location xi, for i = 1, ..., n, the
authors use an additive measurement error model to relate the true copy number at xi, f(xi), and the
observed signal yi:

yi = f(xi) + εi (2.6)

where {εi, i = 1, ..., n} are iid N(0, σ2) and σ is the standard deviation. A wavelet analysis is proposed
to denoise the yi and hence recover the true signals f(xi).

The wavelet family used is the one generated by the Haar function:

ψ(u) =


−1√

2
if − 1 < u ≤ 0

1√
2

if 0 < u ≤ 1

0 otherwise

(2.7)

Defining j ∈ Z+, t ∈ R, as indices for scale and location respectively, the family of dyadic dilations
and translations of the Haar function, ψj,t(u) = 2j/2ψ(2ju− t), is the maximal overlap discrete wavelet
transform (MODWT). Next let W denote the n x n orthonormal wavelet transformation matrix, with
elements defined by the wavelet basis generated by the family of dilations and translation, and αj,t denote
the wavelet coefficients for each member of the wavelet family ψj,t.

The Haar wavelet family is used because the wavelet coefficients are simply, for two adjacent segments
of probes, the deviation of each of the segments from the mean of the two segments. Thus transforming
the aCGH data to the space and frequency domain with the Haar wavelet family directly measures the
difference in the means of adjacent segments. Furthermore the Haar wavelet fits the expected structure
of the data, with regions of CNV along the chromosome expected to occur in blocks.
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The MODWT is employed, rather than the more computationally efficient discrete wavelet transform
(DWT), because it is translation invariant. That is, if fτ denotes a translation of f , fτ (t) = f(t − τ),
then ατ (j, u) = α(j, u− τ). The authors explain that this “eliminates alignment artifacts in the wavelet
coefficients that arise from a discrete subsampling”. This would be a useful feature if one wanted
to compare, in the space and frequency domains only, aCGH data with only one aberration per test
sample. However, it is unclear as to how this would be helpful when comparing aCGH data from test
samples with more than one aberration, since a direct comparison purely in the space and frequency
domains would still be difficult in these situations. Thus the only apparent benefit that the MODWT
really affords is that it does not require the number of probes on a chromosome to be a power of 2 (a
requirement of the DWT).

Having transformed the data into wavelet domain, the denoising process is simply one of setting to zero
all αj,t that are close to zero according to some threshold λ. The new set of coefficients are termed α̂,
and the denoised signal ŷ can be constructed by ŷ = Wα̂.

Hsu et al. (2005) present three test studies: a simulation study; an idealised data study based on a
popular “gold standard” data set produced by Snijders et al. (2001) in which 15 fibroblast cell lines
were hybridised to BAC arrays with 2276 probes spotted in triplicate; and data from an experiment in
which 44 breast cancer tumours were hybridised to BAC arrays with 4762 probes (median spacing of
400 Kb) spotted in triplicate Loo et al. (2004). The authors find that denoising data gives greater power
in subsequent statistical analyses than using raw data. However the issue of how to deal with small
aberrations remains partly unresolved, so to explore this the authors employ three different methods for
choosing λ. These result in denoised data with varying levels of smoothness. The authors find that using
the technique that results in the least smooth denoised function is best for capturing small changes.
Unfortunately, even the best thresholding method for small changes still misses some out. Importantly,
another shortcoming of wavelet analysis is that it requires data points to be evenly spaced, and as such the
authors choose to treat the aCGH data as though this is the case; however this is often an unreasonable
assumption, and affects the applicability of this method to at least a subset of aCGH experiments.

2.5 Segmentation

Smoothing algorithms are useful for the visualisation or pre-processing of aCGH data prior to further
analysis, but they do not address the primary task of automatically identifying regions of copy number
variance. With this in mind many groups have developed model-based segmentation algorithms with
the objective of, rather than smoothing the data, detecting the locations of copy number changes, or
breakpoints, within the data. Depending on the model chosen, some algorithms also constrain the number
of segments to avoid too fine a partition of the data.

As with the smoothing algorithms introduced previously, segmentation methods often view aCGH data as
consisting of a series of piecewise constant segments delineated by abrupt jumps. However these methods
additionally model the segments as a function of various parameters such as the number of breakpoints,
their locations and the mean and variance of the distributions of each segment. Subsequently these
methods maximise a function, typically a likelihood function (but not always), to estimate the model
parameters from the data. Here three different model-based segmentation approaches are discussed:
Circular binary segmentation, proposed by Olshen and Venkatraman (2004), that recursively uses the
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maximum of a likelihood ratio statistic to detect narrower segments of CNV; a genetic local search
algorithm, presented by Jong et al. (2003), that is used to maximise a penalised likelihood function;
and an adaptive penalised likelihood method given in Picard et al. (2005). Additionally, to highlight a
different approach to the segmentation process, a method based on hierarchical clustering (Wang et al.,
2005) which focuses on merging similar segments rather than detecting differences between them, is
discussed.

2.5.1 Circular binary segmentation

Olshen and Venkatraman (2004) frame the task of breakpoint location in aCGH data as a change-point
detection problem.

If X1, X2, ...Xn is a sequence of random variables, then τ is a change-point if X1, ..., Xτ share a distri-
bution function F0 and Xτ+1, ..., Xn share a different distribution function F1.

Denoting yi to be the observed log2 ratio intensity value at the ith genomic location xi, the additive
measurement error model given in eq.(2.6) can be used to relate the true copy number at xi, f(xi), and
the observed signal yi.

Considering the situation where f(x1), f(x2), ..., f(xτ ) are equal, and f(xτ+1), ..., f(xn) are equal but
different to the f(xi) at x1, ..., xτ , then the signals yi observed at x1, ..., xτ will come from one distribution
function, and the signals at xτ+1, ..., xn will come from another. Hence the change-points will be the
indices of the probes where the changes in copy number occur.

The binary segmentation procedure (Sen and Srivastava, 1975) was an early solution to the change-point
detection problem. Let y1, ..., yn be the indexed data set and let Si = y1 + · · · + yi, 1 ≤ i ≤ n, be the
partial sums. Also assume that the yis are normally distributed with a common known variance. For
each 0 < i < n calculate the statistic Zi given by:

Zi =
Si/i− (Sn − Si)/(n− i)√

(1/i+ 1/(n− i))
(2.8)

and the likelihood ratio statistic for testing the null hypothesis that there is no change against the
alternative that there is exactly one change at some location i is then given by:

ZB = max1≤i<n|Zi| (2.9)

If the statistic exceeds the upper αth quantile of the null distribution of ZB the null hypothesis of no
change is rejected and the location of the change-point is estimated to be the i for which ZB = |Zi|. If
the variance is unknown then an estimate of the variance derived from the data can be used instead, the
Zi statistics are then replaced by their corresponding t-statistic, and ZB is replaced by the maximum of
the absolute t-statistics.

Binary segmentation proceeds by applying the test to a segment to find a change-point within it, then
recursively applying the test to the two resulting segments, until no more changes are detected in any of
the segments obtained.
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As motivation for a modification of binary segmentation, Olshen and Venkatraman (2004) highlight a
problem with binary segmentation originally presented in Venkatraman (1992): that it cannot detect a
small changed segment in the middle of a large segment. The problem occurs because the procedure only
looks for one change-point at a time. The modification is termed circular binary segmentation (CBS)
and, considering a segment to be spliced at two ends to form a circle, the likelihood ratio test statistic
for testing the hypothesis that the arc from i+1 to j and the arc from j+1 to i−1 have different means
is given by:

ZC = max1≤i<j≤n|Zij | (2.10)

where the statistic Zij is defined for 1 ≤ i < j ≤ n as:

Zij =
(Sj − Si)/(j − i)− (Sn − Sj + Si)/(n− j + i)√

1/(j − i) + 1/(n− j + i)
(2.11)

As before, if the statistic exceeds the upper αth quantile of the null distribution of ZCs the null hypothesis
of no change is rejected. The possible change-points found via ZC include those that result in three
segments (j < n) as well as the single change-points that result in binary segmentation (j = n). Once
again all change points are found by applying the procedure recursively.

Finally, also incorporated in CBS is a modification that if the data are non-normal then the reference
distribution for ZC is estimated via a permutation method.

Olshen and Venkatraman (2004) have shown that CBS works well by testing the method using the
data set from Snijders et al. (2001), an unpublished ROMA data set in which 23 cancer cell lines were
hybridised to arrays containing 9820 70−mers, and a simulation study. However while the method seems
to succeed in the automated segmentation of the aCGH data, it does not provide any such automation
for the process of identifying which segments represent regions of significant CNV. In other words no
methods for classification and subsequent significance ranking of the delineated segments are provided.

2.5.2 Genetic local search algorithm

Jong et al. (2003) assume that aCGH data are generated by a Gaussian process and consist of a sequence
of piecewise constant segments with sharp changes between them. Furthermore they model the sequence
of segments as a function of the locations of the segment boundaries and the mean and variance of the
distributions for each segment. Then a likelihood function, penalised by the number of segments, is used
to estimate the breakpoint locations. Finally a local search procedure embedded in a genetic algorithm
is used to maximise the likelihood function.

More formally, once again denoting yi to be the observed log2 ratio intensity value at the ith genomic
location xi, the goal stipulated in Jong et al. (2003) is to group the yi into a small number, K, of segments
(y1, ..., yz1), (yz1+1, ..., yz2), ..., (yzK−1 , ..., yn) such that the copy number of the probes in each segment are
identical. The indices z0 = 0 < z1 < · · · < zK−1 < n = zK are then the segment breakpoints, delimiting
K segments. Additionally, the additive measurement error model given in eq.(2.6) is assumed, and thus
the model stipulates that for each segment k, zk−1 < i ≤ zk, the observed signals yi can be considered
as independent and drawn from a normal distribution with mean µk and variance σ2

k that are particular
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to the kth segment. This leads to a log-likelihood function that can be decomposed into a sum of local
log-likelihoods, calculated on each of the segments:

LK =
K∑

k=1

lk (2.12)

where

lk = −1
2

zk∑
i=zk−1+1

{
log(2π.σ2

k) +
[
yi − µk

σk

]2}
(2.13)

and, using maximum likelihood, µk and σk for the kth segment are estimated as:

µ̂k =
1

zk − zk−1

zk∑
i=zk−1+1

yi (2.14)

σ̂2
k =

1
zk − zk−1

zk∑
i=zk−1+1

[yi − µ̂k]2 (2.15)

To find the breakpoints this log-likelihood needs to be maximised relative to z1, ...zK−1. However the
maximum log-likelihood will be obtained with the largest possible number of breakpoints, so to find a
more parsimonious model a penalty term of λ(K − 1) is subtracted to discourage a large number of
segments. Thus the final penalised log-likelihood to be maximised is:

L̃K =
K∑

k=1

lk − λ(K − 1) (2.16)

Jong et al. (2003) report that in their experiments the choice λ = 10 was appropriate.

Searching for the minimising set of breakpoints

Jong et al. (2003) have developed several search algorithms to find the maximising set of breakpoints
for eq.(2.16). The first presented is a local search algorithm that uses the log-likelihood as a scoring
function for any set of breakpoints z1, ..., zK−1. It takes as input the yi data for one chromosome, and
K − 1 randomly generated breakpoints that segment the data into K segments. At every iteration each
breakpoint, selected in a random order, is moved either left or right, also selected randomly. If the move
increases the log-likelihood then it is kept, otherwise a move in the other direction is tested, and only
kept if it reduces the score. The algorithm finishes when moving each breakpoint does not improve the
scoring. This local search algorithm is used in a multi-start local search algorithm, a simulated annealing
multi-start local search, and two genetic algorithms, the most successful of which (as reported in the
paper) is described next.

The genetic local search algorithm begins by generating an initial population of individuals that each
represent a random segmentation of the data. The population is built by creating, for each K in a fixed
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range, a number m of individuals with that many segments. To complete the initialisation step, the local
search algorithm is applied to each individual.

Until a termination criterion that disjunctively combines a maximum number of iterations with the
fitness of the best individual is reached, the genetic algorithm proceeds as follows:

• randomly select two parents from the population

• generate two new offspring through a blind uniform crossover

• apply a mutation to each of the offspring. Either:

– remove: remove the breakpoint whose removal gives the best score

– add: find the kth segment for which k = maxarg(σ2
k) and place a breakpoint in the middle of

the region

• apply the local search algorithm to each of the offspring

• replace the two worst individuals of the population with the offspring

To test their method the authors use a data set from the archives of the Department of Pathology
at VU University Medical Centre. It is comprised of aCGH measurements for 9 gastric tumours from
experiments carried out on BAC arrays with approximately 2275 probes, spotted in triplicate and spread
along the genome at a spacing of ∼ 1.4 Mb. They find that the genetic algorithms have good convergence
behaviour and that their outcome is robust to the initialisation and other random operators used. Finally
they post process the smoothings and breakpoints of the best genetic search algorithm by joining together
smoothing levels that are ’close’ to one another (“reflecting the observation that few copy number values
are present in chromosomes”), and compare the results to a manual smoothing produced by an expert.
The outcomes are comparable, but the genetic search algorithm is more susceptible to outliers than the
manual smoothing.

Finally, a shortcoming of this method not discussed in the paper is that it too, like CBS, does not provide
a mechanism by which to automatically classify and rank segments according to the significance of the
evidence that they are copy number variant.

2.5.3 Adaptive penalised likelihood model to determine breakpoints

A more statistical approach to maximising the log-likelihood given in eq.(2.12) and eq.(2.13) has been
presented in Picard et al. (2005). Rather than choosing an arbitrary penalty constant to lower the number
of segments selected in a profile, the authors introduce a new procedure that chooses the penalty constant
adaptively to the data. Furthermore they use dynamic programming to find the global maximum, in
contrast to genetic local search algorithms that are not guaranteed a globally optimal result.

As explained previously, the log-likelihood will be maximal when each point is in its own segment, so a
penalty against too many segments is required for a more parsimonious model. For a given number of
segments, K, the maximisation of the log-likelihood, L̂K , gives the best segmentation with K segments.
In general, a penalised version of the log-likelihood is then given by:

L̃K = L̂K − βpen(K) (2.17)
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where pen(K) is a penalty function that increases with the number of segments and β is a multiplicative
penalisation parameter.

In the more general context of model selection several choices for pen(K) and β have been presented, but
the authors explain that criteria such as the Akaike Information Criterion (AIC, β = 1, pen(K) = 2K)
and the Bayes Information Criterion (BIC, β = 1

2 log(n), pen(K) = 2K) are not suitable in the case of
breakpoint detection because they overestimate the number of segments, and hence segment the data into
regions that do not necessarily have any biological meaning. The authors also explain that an arbitrary
β and penalty function can be set so that segmentation is coarser, such as in Jong et al. (2003), but that
such a penalty has no firm reasoning behind it.

Instead of applying penalties that are either not suited to the task of breakpoint detection, or have been
picked on an ad hoc basis, the authors use the idea of choosing β adaptively to the data (Lebarbier
(2005) and Lavielle (2005)). Thus in this adaptive penalised likelihood model β is defined to change with
L̂K for each segmentation size K. Additionally, also based on Lavielle (2005), the authors suggest the
use of the penalty function pen(K) = 2K.

To calculate the βs adaptively to the data the L̂K need to be calculated first. Thus a two step algorithm
is suggested for maximising this penalised log-likelihood.

A segmentation algorithm when the number of segments is known

When the number of segments, K, is known the problem of maximising the log-likelihood is simply to
find the best partition into K segments. Thus in this part of the algorithm K takes a range of values,
K1 = 1, ...,Kmax, and for each value of K eq.(2.12) is maximised to find L̂K . To do this the segmentation
problem is framed as a shortest path problem, and a dynamic programming solution is proposed.

The graph, through which the shortest path must be found, consists of the set of n probes at genomic
locations xi, 1 ≤ i ≤ n, with all possible segments represented as directed edges (xa, xb) for all xa and
xb such that 1 ≤ xa ≤ n− 1 and xb > xa, and with the weights of the individual edges proportional to
the negative log-likelihood:

W1(xa, xb) =
xb∑

i=xa+1

{
log(2π.σ2

k) +
[
yi − µk

σk

]2}
(2.18)

Due to the additivity of the log-likelihoods, the weight of a path of K edges from xa to xb is just the
sum of the weights of the individual edges in the path:

WK(xa, xb) =
K∑

k=1

W1(start(k), end(k)) (2.19)

Where start and end are functions that return the start node and end node of a directed edge respectively.

Finding the best segmentation of the aCGH data into K segments is then equivalent to finding the
minimum weight K-step path, ŴK , through the graph from x1 to xn:

ŴK(x1, xn) = minxh
{ŴK−1(x1, xh) +W1(xh, xn)} (2.20)
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And this can be solved in O(n2) time (the algorithm only requires the storage of an upper nxn matrix)
using a standard dynamic programming solution to the shortest path problem. At the end of this
procedure the quantities ŴK1(x1, xn), ..., ŴKmax

(x1, xn) are stored and used in the second part of the
algorithm.

Estimating the multiplicative penalty parameter β

Since the maximum likelihood L̂K measures the fit of the model with K segments to the the data, the
aim is to choose a segmentation size K for which L̂K does not increase significantly. Thus the βs are
defined as a decreasing sequence such that β0 = inf and:

∀i ≥ 1βi = K̂i+1 − L̂Ki
(2.21)

Thus on the curve (K, L̂K), the sequence of βi are the slopes between the points (Ki+1, L̂Ki+1) and
(Ki, L̂Ki), and the procedure to estimate the number of segments is just to calculate the second derivative
of this curve:

∀K ∈ K1, ...,KmaxDK = L̂K−1 − 2L̂K + L̂K+1 (2.22)

and then to select the highest number of segments K such that the second derivative is lower than a
given threshold. The choice of the threshold is arbitrary and the results of the procedure are dependent
upon it. Nonetheless the authors explain that “despite this thresholding the procedure remains adaptive,
since the penalty constant is estimated according to the data ”.

The results given in Picard et al. (2005), based on tests on data from Snijders et al. (2001) and Nakao
et al. (2004) show that, in comparison to BIC, AIC and Jong et al. (2003) this segmentation algorithm
provides an improved method for estimating the number of segments of differing CNV in a given set
of aCGH data. Although the discussion is not made in the paper, the same improvement is made in
comparison to Olshen and Venkatraman (2004) because circular binary segmentation continues until all
segments are found, and an ad hoc method for pruning the results is used afterwards. However this
method still does not provide a method by which to assess the significance of highlighted regions of copy
number change, and the user must still do this by eye.

2.5.4 Cluster along chromosomes

A different approach to segmenting aCGH data, based on hierarchical clustering along chromosomes
(CLAC), is presented in Wang et al. (2005).

Cluster formation

The standard agglomerative clustering algorithm is a bottom-up procedure that builds a binary tree
representing similarities in the data. The algorithm proceeds as follows:

• Start with each data point in a singleton cluster. These are the leaves of the hierarchical tree.
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• While there is more than one cluster:

– Find the two closest clusters.

– Merge the clusters into one. On the hierarchical tree a new node is created with one branch
for each cluster.

When clustering aCGH data the data points are log2 ratio intensity values corresponding to probes that
are ordered along the genome. Thus the order of the leaves on the hierarchical tree are fixed. Hence only
adjacent clusters can be merged and the algorithm is reduced in complexity from O(n2) to O(n).

The similarity of two clusters depends on the similarity of the log2 ratio intensity values in the two
clusters. A statistic called relative distance (rd) is used to measure this similarity. Once again denoting
yi to be the observed log2 ratio intensity at the ith genomic location xi the rd for two contiguous probes
is denoted as:

rd(yi, yi+1) =
|yi − yi+1|

|yi|+ |yi+1|+ |yi + yi+1|
(2.23)

The denominator in eq.(2.23) gives an advantage to pairs of genes that have large absolute values whilst
also sharing signs.

Then there are two possible definitions of the distance between two contiguous clusters of probes, Ci =
i1, i2, ..., ik and Cj = j1, j2, ..., jk where j1 = ik + 1:

rdnearby(Ci, Cj) = rd(yik
, yj1) (2.24)

rdmax(Ci, Cj) = max{rd(yit , yjs)|itεCi, jsεCj} (2.25)

Cluster selection

After the tree is built the next step is to choose which clusters represent segments of probes that are
CNV. Three properties are examined to identify such regions:

1. rd: The rd of this node in the tree.

2. size: The number of probes in this cluster. This is transformed monotonically into [0, 1] by defining
lsizei = log(sizei)

max{log(sizei)} .

3. meanvalue: The mean value of the probes in this cluster.

Two kinds of regions are selected. The first are characterised by a big spike, corresponding to small
values for lsize and very large values of |meanvalue|. The second kind are regions of consistent gain
or loss, where ratios may not deviate from 0 very much, but tend to stay positive or negative in the
whole region. These regions correspond to nodes with bigger lsize, smaller rd, and with not too small
|meanvalue|.

To formalise these rules Wang et al. (2005) use output data from two cDNA aCGH experiments carried
out under the same conditions: reference human vs reference human, and human XY vs human XX.
The first experiment is used to provide an empirical joint distribution of rd and lsize when there is
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no CNV, while the second experiment gives an empirical joint distribution of the variables when most
probes are not in CNV, but a known subset are in CNV (in this instance the subset of probes that are
on chromosome X but not on chromosome Y). This data is from an unpublished larger study of lung
cancer carried out by Young Kim and Jonathan Pollack in which 48 lung cancer cell lines were profiled
on cDNA microarrays containing cDNAs representing 25736 genes, with an average spacing of 60 Kb.

The authors plot scatter plots of (lsize, rd) and (lsize,meanvalue) for the reference vs reference array
and for the XY vs XX experiment. Selection rules for clusters of probes that represent regions of CNV are
then chosen based on lines that segment these plots such that all clusters that cannot be CNV (because
they are reference vs reference) are in one set, while those that are most likely CNV (they appear in the
XY vs XX plots as a group of points distinct from those seen in the reference vs reference experiment),
are in another. For any new data sets these segmenting lines, and hence the selection rules, are calibrated
dependent upon noise levels in the data, and tuned to achieve desired false discovery rates (see next).

Controlling the false discovery rate

In addition to the novel approach to segmentation presented in Wang et al. (2005), the false discovery
rate (FDR, Benjamini and Hochberg (1995)) is used to provide quantitative statistics about the putative
regions of CNV; a functionality not provided by any of the methods described so far.

Hypothesis Accept Reject Total
Null True U V m0

Alternative true T S m1

W R m

Table 2.1: Outcomes when testing m hypotheses

The possible outcomes when testingm hypotheses are given in table 2.1. The FDR is defined in Benjamini
and Hochberg (1995) as the expected proportion of rejected m that are actually true. Referring to table
2.1 this is more formally stated as:

FDR = E

(
V

R
.1{R>0}

)
= E

(
V

R

∣∣∣∣R > 0
)
P (R > 0) (2.26)

Here the null hypothesis for each probe xi is that it does not belong to a region of CNV. R is then
the number of probes selected via the cluster selection process, and V is the number of probes that are
selected but are really from H0. Using reference vs reference hybridisations produced under the same
experimental conditions as the test vs reference experiments it is possible to estimate the FDR as:

F̂DR =
number of probes picked in the reference array (under the same criteria)

number of probes picked in the test array
(2.27)

Parameters for the selection rules are chosen which make the F̂DR first cross a certain level, say 1%. In
this case, if there are m probes selected with this calibration of the rules, then it is possible to say that
more than 0.99m probes among the m selected are truly significant.

Wang et al. (2005) first assess the performance of CLAC using the cDNA microarray lung cancer study
mentioned previously. For a corresponding FDR of 0.009 the results are good; both localised amplifica-
tions and contiguous regions of potential gain or loss are delineated, and noise spikes do not cause the
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procedure to fail. However, because this method does not perform any smoothing prior to clustering,
data sets with more variance than the lung cancer set may cause problems for the algorithm.

Finally the method is tested on the BAC aCGH data from Snijders et al. (2001). There is no reference
vs reference array in this data set, so ‘pseudo reference’ arrays have been produced by removing mea-
surements outside the 97% quantiles. The results compare well to the true known regions of CNV, but
the FDR is overestimated due to the use of the ‘pseudo reference’ arrays.

2.5.5 CGH-Explorer

One other segmentation method, CGH-Explorer, presented by Lingjaerde et al. (2005), uses the positive
false discovery rate (pFDR, Storey (2002)) to select interesting regions of CNV. The pFDR is a version
of the FDR defined as pFDR = E

(
V
R

∣∣R > 0
)
. This conditions on the event that positive findings have

occurred. pFDR is identically 1 when all null hypotheses are true, so to control the pFDR it has to be
estimated for a particular rejection region.

Briefly, a binary classification of the probes is defined based on the signs of probe neighbours; a probe’s
classification is the sign of its neighbourhood mean (the mean of the probe’s log2 ratio and the log2 ratios
of its four neighbours (two on each side)), unless all of the four probe neighbours have corresponding
neighbourhood means that are opposite in sign, in which case the probe’s classification is the opposite
of its neighbourhood mean sign. This binary classification performs implicit smoothing, (via use of
the neighbourhood mean), and causes a partitioning of the genes into sets of consecutive probes. The
partitioning is such that in each set all the probes have the same classification, and such that for any
two neighbouring sets of probes the sets have probes of opposite classification. For each segment the
pair (L,H) is computed, where L is the number of probes in the segment and H is the absolute value
of the average of the log2 ratios of the probes in the segment. The joint null distribution of (L,H) is
then found by Monte Carlo simulations (this is parametrised by the observed variance of the noise in
the data). A rejection region is defined for a series of rejection region thresholds λ, and the proportion
of probes belonging to segments that fall into the rejection region under the simulated null is calculated,
α(λ), as are the number of observed probes whose segments fall into the rejection region, Sλ. Finally
these values are used to calculate an estimate of the pFDR, p̂FDR(λ), and the set of probes Sλ whose
λ gives the desired p̂FDR(λ) is returned.

CLAC and CGH-Explorer represent an improvement over previous smoothing and segmenting methods
because they output regions of CNV that are likely to be statistically significant. Furthermore the FDR
framework means that the end user can explore as many interesting regions of putative CNV as their
risk levels for false discoveries allow. However although the data is available for ranking the highlighted
regions, this is not implemented by either Wang et al. (2005) or Lingjaerde et al. (2005).

2.6 Thresholding

Although thresholding algorithms were among the first analytical methods for aCGH data they are
discussed here, after smoothing and segmentation methods, because despite their simplicity they provide
automatic classification of regions of CNV, and have the potential to provide quantitative statistics about
the highlighted regions.
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Thresholding methods establish log2 ratio thresholds that can be used to classify probes or regions of
probes as CNV. For example Pollack (2002) developed the following method for an experiment in which
44 breast tumours and 10 breast cancer cell lines were profiled for CNV on cDNA arrays containing
probes mapped to 6691 human genes:

1. Smooth log2 ratios using a moving average window.

2. For i = 1, ..., n (n is the number of probes), using a ‘reference vs reference’ experiment, find a
window size k = k̂(i) for the ith probe such that it gives the highest positive probe neighbourhood
mean val0 high(i), k = 1, 3, 5, ..., n/2. Similarly and a window is found that gives the lowest negative
neighbourhood mean val0 low(i), k = 1, 3, 5, ..., n/2.

3. Find upper and lower thresholds for val0 high(i) and val0 low(i) respectively, so that the overall
proportion of false positives in the reference sample is α/2 in each of the upper and lower tails of
the empirical null distribution.

4. For the test data , and once again for i = 1, ..., n, find a window size k = k̂(i) for the ith probe
such that it gives the highest(lowest) positive(negative) probe neighbourhood mean valhigh(i)
(vallow(i)).

5. All probes for which valhigh(i) (vallow(i)) exceeds the upper (lower) threshold are marked as
significant and given the corresponding classification. If the number of probes is n and the number
of probes called significant is s, then the estimated FDR is αn/s. α is chosen to give the desired
FDR.

As discussed above, classification and the FDR are useful tools in the process of choosing putative
regions of CNV for further exploration. However there are some problems with the thresholding method
described in Pollack (2002). First, there is no motivation given for the smoothing of the log2 ratios, nor
is there one given for the summary statistics valhigh(i) and vallow(i) calculated for the ith probe. Second,
because the summary statistic is calculated for individual probes rather than for regions of probes, it
is possible to rank the probes according to their likelihood of being implicated in a region of CNV, but
there is no analogous method provided for ranking the regions themselves. Therefore this method has
the potential to be very useful for end users, but some statistical grounding and development is required
before the potential can be fulfilled.

As an alternative to using a control experiment, thresholds can be set using mixture models. Mixture
models assume that the log2 ratios are independent samples from an underlying distribution that consists
of multiple components, with each component corresponding to a different type of CNV. Algorithms
such as the EM algorithm are used to estimate, from the data, the parameters of each component of the
model (for example in a Gaussian mixture model the mean and variance of each component would be
estimated). Finally the estimated parameters are used as thresholds, on the log2 ratios, with which to
classify probes. One such method has been presented in Hodgson et al. (2001) where a mixture of three
Gaussian distributions was fitted to aCGH data, (from an experiment using 85 BAC arrays each with
∼ 380 probes), using a maximum likelihood method.

This method is simple and has been shown to be effective. However it requires the user to make rather
subjective and ad hoc decisions regarding good thresholds for the different types of CNV and is there-
fore susceptible to error. Furthermore, although the mixture model method could provide significance
rankings for the regions found, Hodgson et al. (2001) have not implemented this. These shortcomings
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render this method far less useful than its potential allows.

2.7 Hidden Markov models

None of the smoothing and segmentation methods presented so far have an explicit, and biologically
meaningful, underlying model of the possible types of CNV. CGH-Explorer and the thresholding meth-
ods provide a limited model which explicitly assumes that positive/high (negative/low) log2 ratios are
associated with gain (loss) in copy number, but nothing is said of the relationship between states of CNV,
or of the relationship between probes with the same CNV. Hidden Markov Models (HMMs) provide a
probabilistic framework in which to describe a CNV state dependency structure and to relate observed
signals to it. This framework affords several improvements over the previous methods.

Without a state dependency structure the simplifying assumption in the methods discussed is almost
always that the observed signal intensities are independent of one another conditional on an underlying,
but unspecified, state of CNV. Although this is reasonable when the underlying probes are probes, short
oligonucleotides that are much closer to one another are unlikely to act independently. Furthermore it
is useful to incorporate the dependence of signals from neighbouring probes, via explicit relationships
between their underlying states of CNV, in the segmentation process. HMMs account for the inherent
dependencies between neighbouring probes by probabilistically relating their hidden true states of CNV.

Additionally the previous methods do not combine data from probes that are in the same class of region
but are far apart on the genome. Conversely, if a state dependency is made explicit, information can be
borrowed globally across the data because each probe, regardless of its physical location, will contribute
information to one of the explicit states of CNV. In this way strengths are borrowed across the genome
when an HMM is fitted to data.

Furthermore, in the smoothing and segmentation methods all classifications of the delineated regions are
carried out in an ad hoc fashion after the segmentation process. However the problems of segmentation
and classification are intertwined, therefore an improved approach would solve the problems jointly.
HMMs provide an explicit underlying state dependency structure; so fitting the model automatically
generates classifications for, and hence segmentation of, the data.

Finally, many of the methods discussed so far do not estimate the statistical significance of the detected
copy number changes, and among those that do (Wang et al. (2005), Lingjaerde et al. (2005), Pollack
(2002), Hodgson et al. (2001)), implementations are either somewhat insufficient or ad hoc. HMMs
provide a thorough statistical framework for detecting CNVs and enable the detection of such regions
based on statistical significance.

In summary, these attributes make the use of HMMs in aCGH data analysis an important advancement
in the field.

2.7.1 Elements of an HMM

The following description of an HMM is presented here primarily for reference, and is based on the
explanation given in Rabiner (1989).

A discrete time HMM with continuous output is characterised by the following:
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• N , the number of states in the model. The states are hidden but for many practical applications
there is some real-world significance attached to them. In the case of aCGH data analysis the
states represent various types of CNV. The individual states are denoted as S = {S1, S2, · · · , SN},
and the state at time(position or point) i as qi, where 1 ≤ i ≤ n and n is the number of points (in
the case of aCGH data n is the number of probes).

• The state transition probability distribution A = {ajk} where, ∀i,

ajk = P [qi+1 = Sk|qi = Sj ], 1 ≤ j, k ≤ N (2.28)

This transition matrix is the explicit representation of the relationship between states of CNV.

• The observation probability density in state j, the most general representation of which is a finite
mixture of the form

bj(O) =
M∑

m=1

cjmΠ[O, µjm,Ujm], 1 ≤ j ≤ N (2.29)

where O is the vector being modelled, cjm is the mixture coefficient for the mth mixture in state
j and Π is any log-concave or elliptically symmetric density (eg Gaussian), with mean vector µjm

and covariance matrix Ujm for the mth mixture component in state j. Usually a Gaussian density
is used for Π, as is the case in the methods presented next. B is then the vector bj(O), and relates
the underlying states of the HMM to the observed data. In the case of aCGH data analysis the
observation probability density relates the true CNV of a probe to the log2 ratio observed for that
probe.

• The initial state distribution π = {πj} where

πj = P [q1 = Sj ], 1 ≤ j ≤ N (2.30)

λ is used to compactly note the parameters A, B and π of an HMM.

2.7.2 Choosing an optimal state sequence

When using HMMs to segment and classify aCGH data, the primary task is to find the underlying
sequence of CNV states. Thus a brief explanation of a method for choosing the optimal state sequence,
based on Rabiner (1989) is given here.

It is difficult to choose an appropriate definition of optimality for a state sequence. The criterion used
by all of the HMM methods described in the following sections is to choose the states qi which are
marginally most likely. These are calculated as follows.

Define the forward variable αi(j) as:

αi(j) = P (O1O2 · · ·Oi, qi = Sj |λ) (2.31)

that is, the probability of the partial observation sequence, O1O2 · · ·Oi until point i, and state Sj at
point i, given the model λ.

The backward variable βi(j) is defined as:
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βi(j) = P (Oi+1Oi+2 · · ·On|qi = Sj , λ) (2.32)

that is the probability of the partial sequence from i + 1 to the end, given state Sj at point i and the
model λ.

The forward and backward variables are then solved inductively using the Forward−Backward Procedure.
Solve for αi(j):

1. Initialisation:
α1(j) = πjbj(O1), 1 ≤ j ≤ N (2.33)

2. Induction:

αi+1(k) =
[ N∑

j=1

αi(j)ajk

]
bk(Oi+1), 1 ≤ i ≤ n− 1, 1 ≤ k ≤ N (2.34)

Solve for βi(j):

1. Initialisation:
βI(j) = 1, 1 ≤ j ≤ N (2.35)

2. Induction:

βi(j) =
N∑

k=1

ajkbk(Oi+1)βi+1(k) (2.36)

Finally define the variable:

γi(j) = P (qi = Sj |O, λ) (2.37)

that is, the probability of being in state Sj at point i, given the observation sequence O. This can be
expressed in terms of the forward and backward variables:

γi(j) =
αi(j)βi(j)
P (O|λ)

=
αi(j)βi(j)∑N

j=1 αi(j)βi(j)
(2.38)

Using γi(j) it is then possible to solve for the most likely state qi at point i as,

qi = argmax1≤j≤N [γi(j)], 1 ≤ i ≤ n (2.39)

This method maximises the expected number of correct states but it does so without regard to the
probability of the occurrence of sequences of states. An alternative optimality criterion is to find the
single best state sequence path, that is to maximise P (Q|O, λ). A dynamic programming technique for
finding the best state sequence is the V iterbi algorithm, also explained in Rabiner (1989). However, this
will not be discussed here because none of the current HMM methods for aCGH data use this criterion.
At the end of this section the ramifications for aCGH data analysis of maximising eq.(2.39), rather than
using the Viterbi algorithm, will be discussed.
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2.7.3 Initial application of HMMs to aCGH data analysis

The first application of HMMs to BAC aCGH data analysis was presented in Fridlyand et al. (2004).
The five possible CNV states that probes could be classified under were specified accordingly:

1. Focal aberrations are localised regions (one or two probes) of altered copy number. These are
sub-classified as:

• Low level gains or losses

• High level focal amplifications

• Outliers. Note that these do not represent a CNV type but rather “an auxiliary quantity
used in finding amplifications and detecting array problems”

2. Transition points are inter-probe spaces that border two large regions associated with different
copy number states.

3. Whole chromosomal changes occur when an entire chromosome is gained or lost.

The process for fitting the HMM and classifying probes is carried out by two algorithms.

Segmenting probes into sets with the same underlying copy number

For each chromosome, the following steps are carried out:

1. For each K = 1...Kmax an HMM of size K is fitted to the data. π is initialised by assigning the
majority of probability to the “normal” state, and the remaining probability uniformly among all
other states. The transition matrix A is initialised with a high probability assigned to staying
in the same state and low non-zero probabilities assigned to the transitions between states. B is
initialised by segmenting the normalised signals in to K states using partitioning among medoids
(Kaufman and Rousseeuw, 1990) and then, for each state, using the median of the normalised
signals in the state as an estimate for the mean of the state, and similarly estimating the variance
of the state. Next the EM algorithm is used to maximise Lik(λ|O): in the estimation step the
Forward-Backward algorithm is employed to solve equation 2.39, and to identify an optimal state
sequence such that at each t the most likely qt is chosen; in the maximisation step the parameters
λ are estimated, based in the optimal state sequence, to increase Lik(λ|O). Once the maximum
likelihood estimates for λ are obtained, they can be used in the Forward-Backward algorithm to find
the maximum marginal state occupancy. Finally, a penalised negative log-likelihood (penalising
for an increased complexity or number of states) is calculated for the K-state HMM.

2. Choose the model that minimises the negative log-likelihood.

3. Merge states with close medians until either there is only one state left, or all the states have
medians that are separated from all other states by at least some threshold d. (Note that this step
is problematic because it undermines any meaning assigned to the original states.)

Assigning CNV types to genomic regions and individual probes

Having segmented the probes on each chromosome the probes are classified as follows:
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First the sample standard deviation is estimated: Compute the median absolute deviation (MAD) of
the probes in the states containing at least 20 probes located on chromosomes partitioned into no more
than 3 states. The standard deviation is estimated as median of the MADs for all such states.

Finally probes are classified, according to the scheme listed above, depending on the distance of their log2

ratios from the median of their allocated state, and also on the states of neighbouring probes. Transition
points are placed between two regions whose state differs, and whole chromosomal changes are identified
when three heuristic rules pertaining to quantity, mean and median of log2 ratio values are obeyed.

This method, tested on the data from Snijders et al. (2001), affords some improvement over previous
methods because it provides automatic classification of probes and segments. However the power of
HMMs is not employed because the states of the HMM have no intrinsic meaning. Instead the states
represent a discrete number of mean levels and the HMM is employed as an elaborate model fitting step
in what transpires to be a segmentation method, penalised for complexity, followed by a merging step.
Consequently post-processing is required to determine labels for the segments, and therefore segmentation
and classification are still solved separately. Furthermore, there is still no significance associated with
the highlighted regions of CNV.

2.7.4 Bayesian HMM for aCGH data analysis

An HMM method that addresses the problems of Fridlyand et al. (2004) is presented in Guha et al. (2006).
There the authors propose a Bayesian 4-state HMM, in which informative priors, based on knowledge
of aCGH data, are assumed for all unknown parameters. Copy number variations are identified using
posterior probabilities. Since the posterior distribution cannot be solved analytically, MCMC is used for
simulation based inference.

Likelihood function

In Guha et al. (2006) it is argued that chromosomes have differing propensities for CNV, and therefore
each one should be fitted with its own HMM, and thus has a distinct set of parameters. For a given
chromosome the ordered genomic locations are denoted by i, 1 ≤ i ≤ n, and the probes at those positions
by xi. Then Oi denotes the normalised log2 ratio for the probe xi at position i.

For each probe there is a true hidden copy number state, qi, which can take a value in the set S =
S1, S2, S3, S4. qi = S1 represents a loss at xi, qi = S2 represents no change, qi = S3 denotes a single copy
gain and qi = S4 represents a multiple copy gain. The states q1, ..., qn denote the copy number changes
along a chromosome. (Note that this definition is not symmetrical for gain and loss because of the log2

ratios that were originally observed in BAC aCGH.)

For j = 1, ..., 4, µSj is defined as the expected log2 ratio of all probes xi for which qi = Sj . The µSj ’s
are unknown, but due to their biological interpretations they can be ordered: µS1 < µS2 < µS3 < µS4 .
The normalised observed log2 ratios are assumed to be independently distributed, conditional on copy
number, as Oi N(µqi

, σ2
qi

), where 1 ≤ i ≤ n.

Finally the elements of transition matrix A are assumed to be strictly positive, and the matrix is assumed
to have a unique stationary distribution, denoted by πA = (πA(1), πA(2), πA(3), πA(4)), where πA(j) is
strictly positive for state Sj , j = 1, ..., 4. Then the initial state distribution π = πA.
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The chromosome specific hyper-parameters areA, means {µS1 , µs2 , µs3 , µS4} and error variances {σ2
S1
, σ2

S2
, σ2

S3
, σ2

S4
}.

Priors

Let X F.I(c < X < d) denote that X has distribution F on the interval (c, d), with the density rescaled
to make it a random variable. Then the means, µSj are assumed to have the following priors:

• µS1 N(−1, τ2
S1

).I(µS1 < ε), where ε > 0 and determines the boundaries for the µSj

• µS2 N(0, τ2
S2

).I(−ε < µS2 < ε)

• µS3 N(0.58, τ2
S3

).I(ε < µS3 < 0.58)

• [µS4 |µS3 , σS3 ] N(1, τ2
S4

).I(ε < µS4 > µS3 + 3σS3)

For a discussion of the choice of the priors, which are generally based on the theoretical signals obtained
from pure samples, and also for an analysis of a robust range of choices for the τs and ε, the reader is
referred to Guha et al. (2006).

Priors for the measurement errors are assumed to be σ−2
Sj

gamma(1, 1).I(σ−2
Sj

> 6) for j = 1, 2, 3 and
σ−2

S4
gamma(1, 1). Finally, with ai denoting the ith row of A, it is assumed that the ai are independently

distributed with ai ∼ Dirichlet4(θSi,S1 , θSi,S2 , θSi,S3 , θSi,S4), where i = 1, ..., 4 and the θs are positive.
Again, a discussion of these choices is given in Guha et al. (2006).

Posterior inference

The posterior distribution cannot be solved analytically so MCMC is used for simulation based inference.
HMM parameters are iteratively sampled in blocks, along with state sequences that are generated by
a stochastic version of the Forward-Backward algorithm. For each iteration of the MCMC there is a
Bernoulli variable Zij for each probe and each type of CNV. For a given probe xi, and a given state
Sj , qi = Sj (Zij = 1)for some MCMC draws and qi 6= Sj (Zij = 0) for the remaining iterations. The
probability that Zij = 1 is the posterior probability that probe qi = Sj , and for a large enough sample of
MCMC outcomes, the average of the Zij is a simulation-consistent estimate of the posterior probability.
Finally the Bayes decision rule corresponding to a 0-1 loss function is used to declare qi = Sj if the
estimated posterior probability is greater than 0.5. If all n probes on a chromosome have a common
Bernoulli outcome, and the simulation consistent posterior probability of a chromosome-wide alteration
is greater than 0.5, then a whole chromosomal change is declared.

Having assigned an underlying state of CNV, qi, for all xi, a classification scheme closely modelled on the
scheme listed in Fridlyand et al. (2004) is used to give further biological interpretation to the four basic
states of CNV, including sub-labelling of some focal aberrations as outliers. Finally transition points,
also defined in the original HMM paper, are detected by finding a simulation consistent estimate of the
set of change-points that have the highest joint posterior probability.

Modifications to the Bayesian HMM

Shah et al. (2006) have made two modifications to the Bayesian HMM introduced above. Briefly the
HMM is extended such that the observation density is a mixture of two Gaussians, one representing probes
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that belong to one of the four states listed previously (inliers), and the other representing outliers. The
outlier distribution is modelled as Gaussian with µ0 and σ2

0 . An indicator variable is then used to act
as a “switching parent” variable for each probe xi, which selects between the outlier parameters and
the inlier parameters. The indicator variables are modelled as conditionally independent, so there are
no Markovian dynamics on the outliers. This means that the model can make temporary “excursions”
to the outlier state, without incurring any “penalty” that would be caused through the use of a state
transition matrix.

The second modification in Shah et al. (2006) is that instead of assuming that chromosomes have differing
propensities for CNV, the opposite argument is made and the posterior distributions of the parameters
A,µ, σ are expected to be consistent across chromosomes. Thus these parameters can be estimated using
pooled data across all the chromosomes in the sample, which is postulated to be advantageous since the
estimates are then guided by more data. Only the sampling of the states is estimated individually for
each chromosome (because there is no real-world interpretation for the dependency of a probe at the end
of one chromosome and the probe at the start of another chromosome).

The primary output of both types of Bayesian HMM is a CNV state, qi, for each probe xi that has
maximum marginal likelihood. Further biological classifications are made based on the scheme listed in
Fridlyand et al. (2004), and transition points that border two large regions associated with different CNV
states are also highlighted. The Bayesian HMM in Guha et al. (2006) is tested on three data sets: the
“gold standard” data set in Snijders et al. (2001); a data set from Aguirre et al. (2004) from an experiment
in which 24 pancreatic adenocarcinoma cell lines and 13 primary tumour specimens were hybridised to
cDNA arrays comprising 14160 cDNAs; and a final set from Bredel et al. (2005) from an experiment in
which 26 samples representing primary glioblastoma multiforme were hybridised to cDNA arrays with
41421 probes. The method is reported to perform successfully, and to have a favourable comparison to
the CBS and adaptive penalised likelihood models discussed above. Shah et al. (2006) run their method
on data from an experiment reported by de Leeuw et al. (2004), in which 8 mantle cell lymphoma cell
lines have been hybridised to Sub Megabase Resolution Tiling arrays comprising 32000 probes. The
tests suggest that pooling data and integrating knowledge of outliers into the HMM framework increase
the accuracy of results. Therefore both Bayesian HMMs represent significant improvements to the field
of aCGH data analysis because they perform segmentation and classification jointly, and because they
provide a probabilistic framework in which to assess results.

However there are shortcomings of HMMs. First, there are always many parameters to set. This can
either be done using expert knowledge or, as is the case with both the Bayesian HMMs, parameters
can be set using prior distributions. The shortcoming of the former approach is that if parameters are
not set by an expert, or if indeed there is no knowledge regarding appropriate parameter values, then
parameters can lose meaning and results become impossible to interpret. The problem with the latter
approach is that it is computationally intensive, if MCMC simulation is employed, and with the increase
in resolution of aCGH techniques, this could become significant.

A second problem with the HMMs presented here is the chosen criteria for optimality of a state sequence.
All three methods choose the states, qi that are marginally most likely using the Forward-Backward
algorithm. It can be argued that in the case of aCGH data analysis, especially as array resolution
increases, the point of interest is not the most likely state of CNV for each probe, but rather the most
probable pattern of CNVs in the data as a whole. With this in mind it seems more reasonable to instead
employ the Viterbi algorithm to find the single best state sequence.
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Last, the output probabilities from the Bayesian HMMs, given for the classification of individual probes,
are not the probabilities of interest in the task of ranking highlighted segments of CNV within the aCGH
data. Although switching to the Viterbi algorithm will give a probability for the most likely single
sequence of CNVs, it will still be necessary to develop methods that provide probabilities and rankings
for segments within the global pattern of CNVs.

2.8 Smith-Waterman algorithm adapted for aCGH

With the exception of CBS, which has been used to analyse a very high resolution aCGH data set
consisting of 388352 probes (Graubert et al., 2007), none of the methods described so far have been
tested on a data set larger than the 41421 probe experiment used in a review of aCGH data analysis
algorithms conducted by Lai et al. (2005). By analysis it is clear that several of these methods, including
Eilers and de Menezes (2004), Picard et al. (2005), Guha et al. (2006) and Shah et al. (2006), either will
not scale to, or are too computationally intensive for, aCGH data of the order of 105 probes. Most of the
methods discussed make the assumption that the log2 ratios are independently and normally distributed
conditional on copy number. However, referring to figures 2.2 and 3.3 it is clear that with some high
resolution data sets this may no longer be a reasonable assumption. Methods that do not assume this are
those presented by Olshen and Venkatraman (2002), Pollack (2002), Wang et al. (2005) and Lingjaerde
et al. (2005). The last three methods are also those that provide control of the FDR, but the first two
require, ideally, a reference vs. reference experiment to do this, and none of them provide a significance
ranking for the highlighted regions of CNV.

The Smith-Waterman algorithm adapted for aCGH data (SW-ARRAY), presented by Price et al. (2005)
is the only method that offers both a nonparametric segmentation procedure and a nonparametric test
of significance.

2.8.1 Motivation

In bioinformatics the Smith-Waterman algorithm was originally applied to the problems of DNA and
protein sequence local alignment (Smith and Waterman, 1981), and for the identification of protein
sequence segments with unusual properties (Karlin and Altschul, 1990). Array CGH data, when analysed
in genome order, can be considered as a one dimensional series of continuously distributed scores, in which
sub-sequences composed primarily of high values may indicate regions of gain in copy number, and those
composed largely of low values might be due to loss in copy number. Thus the problem of finding regions
of CNV reduces to that of identifying sub sequences with unusual properties, and the work of Karlin and
Altschul (1990) is readily applicable.

2.8.2 Statistics of maximal segment scores

Once again denoting yi to be the observed log2 ratio at the ith genomic location xi, for i = 1, ..., n, each
yi can be considered as a score from a continuous distribution. Two assumptions are made about the
data. First that at least one of the yi is positive, and second that either E(yi) < 0, or the scores can be
transformed so that this is the case.
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The behaviours of sums of consecutive log2 ratios is as follows. Starting at yi define the partial sums as:

Sik =
r=i+k∑

r=i

yr, (2.40)

that is, Sik is the accumulated score of k consecutive probes, starting at probe xi. As k increases the Sik

are a random walk with negative drift. When looking for regions of increased CNV the goal is to find the
maximum attained by this walk, and hence to find the corresponding sequence of yi that has the greatest
additive score. (To find regions of decreased CNV the signs of the data must first be changed, and then
the goal remains the same). This is the maximal segment and its score is the maximal segment score.
The maximal segment score is also a local maximum; you can neither shrink nor expand the segment
without reducing the score.

The basic result, stated in Karlin and Altschul (1990) (see also Mott and Tribe (1999)), is as follows.
Denote the maximal segment score for a sequence of length n, as S(n). Then the mean of the distribution
of S(n) is of the order lnn/λ, where λ is the unique positive solution to the equation

∫
f(y)exp{λy} = 1, (2.41)

and f(y) is the density of log2 ratios.

Then the random variable S̄(n) = S(n) − (lnn)/λ has the close approximating extreme-value Gumbel
distribution

ProbS̄(n) > s ≈ 1− exp{−K ∗ exp{−λx}}, (2.42)

where K is related to the mean of the distribution by µ = γ+log K
λ , where γ is Euler’s constant (0.577).

This result will be important in future work when the method will be extended to incorporate SNP data
(see chapter 5), but for the moment the focus is on the algorithm employed by Price et al. (2005) to
identify all the locally high scoring segments in the aCGH data.

2.8.3 Composition of the maximal segment

An important consequence of searching for maximal segments is that, given an appropriate choice of
scoring scheme, the maximal segment will correspond to the most statistically significant segment in
terms of the type of segment of interest. It is easier to understand this by way of an example (presented
in Karlin and Altschul (1990)):

As explained previously, one of the first applications of the Smith-Waterman algorithm was to search
for regions of a protein characterised by an unusual amino acid composition. In this case, by definition,
the frequencies of amino acids in the regions of interest will be different to the frequencies of the amino
acids elsewhere in the protein, so a scoring scheme based on these relative frequencies will be best for
distinguishing the regions. In particular Karlin and Altschul (1990) show that the optimal score for
an amino acid a is the log-likelihood ratio log(u/v) where u is the frequency with which a appears in
the regions of interest and v is the frequency with which it appears in the rest of the protein. In this
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example, the maximal scoring segment is the maximal sum of log-likelihood ratios, and is hence directly
interpretable as the segment most likely to be a region of the type characterised by the amino acid
composition of interest.

In terms of aCGH data the scores currently proposed, (the log2 ratio intensity values), do not have
a comparable intrinsic meaning, and hence nor do they imply such a meaning for maximal scoring
segments. However it is worth noting that if such a scoring scheme could be devised, then the use of
the Smith-Waterman algorithm would automatically confer a statistical meaning on the maximal scoring
segment.

2.8.4 Algorithm

The Smith-Waterman algorithm is an efficient way to find all locally high scoring segments in the data.
This is the one dimensional adaptation for aCGH data, SW-ARRAY, presented in Price et al. (2005):

1. Subtract a threshold t0 from the log2 ratios so that the mean of the adjusted scores is negative.

2. Let y̌i be the adjusted score for the ith probe xi. The score of the segment from p to q inclusive is
then defined as

T (p, q) =
q∑

i=p

y̌i. (2.43)

3. S(q) then denotes the adjusted score of the segment ending at coordinate q, and B(q) is the
coordinate of the beginning of the segment that ends at q. The following recursion finds the high
scoring segments:

Recalling that the probes are indexed by i, where i = 1, ..., n, set S(0) = 0, B(0) = 1, and for q > 0:

S(q) =

{
S(q − 1) + y̌q if S(q − 1) + y̌q > 0
0 otherwise

(2.44)

B(q) =

{
B(q − 1) if S(q) > 0
q otherwise

(2.45)

Finally the boundaries {B(qmax), qmax} and score S(qmax) of the maximal segment are returned. To
identify all high scoring segments the maximal segment is replaced by zeroes and the algorithm is repeated
until no positive scoring segments are found.

2.8.5 Permutation test

To estimate the statistical significance of a high scoring segment the adjusted aCGH data are permuted
many times (say, 1000), and SW-ARRAY is performed on each of the permuted data sets. The proportion
of times that the maximal segment score in the permuted data is larger than that of the high scoring
segment is then a permuted p-value for the high scoring segment. This method is “based on the premise
that successive scores from the permuted data approximate the null distribution of scores” (Price et al.,
2005).
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2.8.6 Application to aCGH data

In Price et al. (2005) an experiment is presented in which a set of DNA samples from patients with
accurately mapped known monosomies on the terminal 2Mb region of chromosome 16p are hybridised
to DOP-PCR amplified BAC and PAC arrays of the region. SW-ARRAY is tested on the data set and
is found to perform very accurately and to be relatively insensitive to the choice of t0.

In terms of performance on a very high throughput data set, Komura et al. (2006) use a modification
of SW-ARRAY as part of their analysis of a 500K EA (Early Access) array. These arrays are a pre-
commercial version of the GeneChip Human Mapping 500K Array set which contains 534500 SNPs on two
genotyping arrays. Each array has unique outliers and the merged error distribution is therefore known
to be non-Gaussian, so SW-ARRAY is ideal for this situation because it is nonparametric. Furthermore
because the SW-ARRAY algorithm is O(nv), where v is the number of permutations required for the
significance test, it also scales well to data sets of this magnitude.

2.9 Summary

Table 2.2 summarises the aCGH analysis methods described in this chapter. Smoothing methods are
useful for visualisation and pre-processing prior to segmentation, but they do not automatically segment
aCGH data. Segmentation algorithms address this problem but, in general, do not classify or rank pu-
tative regions of CNV. CLAC and CGH-Explorer represent some improvement over most segmentation
algorithms because they provide control over the FDR, and CGH-Explorer also provides a binary clas-
sification of regions. It should be noted that some post processing segment merging schemes have been
proposed by Hupe et al. (2004) and Willenbrock and Fridlyand (2005), and that these are intended as
precursors for a range of heuristic classification algorithms that have been developed for the classification
of putative CNV segments located by segmentation algorithms.

HMMs have the potential to incorporate a biologically meaningful underlying model of CNV into a joint
segmentation and classification process. Additionally they borrow inferential strength from across the
data set. Finally they provide a statistical framework for detecting CNVs and enable the detection of
such regions based on statistical significance. Unfortunately the HMM presented by Fridlyand et al.
(2004) does not fulfil any of these potentials and transpires to be a complicated segmentation method
followed by a merging step. In contrast the Bayesian HMMs presented by Guha et al. (2006) and Shah
et al. (2006) are probabilistically well-founded, perform well, and provide posterior probabilities on the
inferences made. However, all HMMs have many parameters that are difficult to set, and the MCMC
employed in both Bayesian HMMs to set these parameters could become too computationally intensive
for very high throughput data (∼ 105 probes). Furthermore the Bayesian HMMs give a probability for
the classification of individual probes, but the probability of interest is that of the segments of CNVs,
and methods still need to be developed for this task.

Of all the methods discussed here the thresholding methods are the simplest, and are also some of
the best suited for the task of locating CNV in aCGH data. The methods work by searching for
probes that are above or below a certain threshold, so there is an automatic classification of highlighted
probes. Furthermore they have the potential to provide quantitative statistics about highlighted runs of
probes. Unfortunately neither of the papers discussed in section 2.6 calculate the statistical significance
of putative CNVs, but Pollack (2002) do control the FDR.
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SW-ARRAY is a nonparametric thresholding and segmentation procedure. It provides implicit smoothing
of the data and an automatic classification of putative regions. Importantly, it is the only method
presented that provides a nonparametric test of significance for putative CNVs. Additionally it is one of
only two methods (the other is CBS) with published use on a very high throughput data set. Therefore
SW-ARRAY will provide a good point of reference for the novel aCGH analytical method presented in
this project, which aims to locate and rank putative regions of CNV in a very high throughput ROMA
data set (see chapters 3 and 4).
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Method Authors Category Extra Statistical
Framework

Data sets

-
Pollack
(2002)

Thresholding using
ref vs. ref
experiment

Pre-
smoothing

Control FDR + Pollack (2002):
cDNA, 6691

-
Hodgson
et al. (2001)

Thresholding using
mixture models

- -
+ Hodgson et al.
(2001): BAC, 380

Quantile
smoothing

Eilers and
de Menezes
(2004)

Smoothing - -
+ Nakao et al.
(2004): BAC, 2120

Wavelet
denoising

Hsu et al.
(2005)

Smoothing - -
+ Snijders et al.
(2001): BAC, 2276

+ Loo et al. (2004):
BAC, 4762

Circular binary
segmentation

Olshen and
Venkatra-
man
(2004)

Segmentation
Pre-
smoothing

-
+ Snijders et al.
(2001)

+ ROMA, 9820
+ Graubert et al.
(2007): long oligo,
388352

Genetic local
search

Jong et al.
(2003)

Segmentation - -
+ BAC, 2275

Penalised
likelihood
model

Picard et al.
(2005)

Segmentation - -
+ Snijders et al.
(2001)

+ Nakao et al.
(2004)

Cluster along
chromosomes

Wang et al.
(2005)

Segmentation - Control FDR
+ cDNA, 25736

CGH-Explorer Lingjaerde
et al. (2005)

Binary
classification

Smoothing
Control FDR

-

HMM Fridlyand
et al. (2004)

HMM for
segmentation

Post-process
classification

-
+ Snijders et al.
(2001)

Bayesian HMM Guha et al.
(2006) &
Shah et al.
(2006)

Bayesian HMM for
segmentation and
auto-classification

-
Posterior
probability for
states of probes

+ Snijders et al.
(2001)

+ Aguirre et al.
(2004): cDNA,
14160

+ Bredel et al.
(2005): cDNA,
41421

+ de Leeuw et al.
(2004): SMRT,
32000

Smith-
Waterman for
aCGH

Price et al.
(2005)

Nonparametric
segment
identification

Implicit
smoothing

Nonparametric
significance test
and ranking

+ BAC, 2Mb region
+ Komura et al.
(2006), 534500

Table 2.2: Summary of aCGH analytical methods.
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Chapter 3

Mouse ROMA experiment

3.1 Inbred mouse strains

In the following chapters data from a ROMA CGH experiment will be introduced and analysed. The
experiment was carried out on seven inbred mouse strains, with an eighth strain as the reference strain.
The seven strains were A/J, AKR/J, BALB/cJ, C3H/HeJ, CBA/J, DBA/2J and LP/J, and the refer-
ence strain was C57BL/6J. These inbred mouse strains are of particular interest because there is other
genotypic data for them in the form of single nucleotide polymorphisms (SNPs). Furthermore they are
the progenitors of a genetically heterogeneous stock (HS) which has been used in a study of quantitative
trait loci (QTLs) (Solberg et al. (2006), Valdar et al. (2006a), Valdar et al. (2006b)). With SNP, CNV
and QTL data for this group of mouse strains it is possible to study the relationships between these
phenomena. The study, in turn, requires the development of new methods for the integration of such
data sets.

3.2 Probe set

Oxford Gene Technology (OGT) designed 216749 60-mer probes to provide a coverage of Build 33 of the
C57BL/6J mouse genome. Of these, 216457 probes were successfully re-mapped to Build 36 of C57BL/6J
and this is the build that the following analysis is performed upon. It is important to note that probes
are designed with reference to C57BL/6J, so deletions in this strain are not detectable with this method
(but this is true for the reference strain in any aCGH experiment).

X and Y chromosomes are not considered in this analysis because CNV due to sex confuses the signal
from CNVs due to strain on those chromosomes. Additionally, there are problems because of lower probe
density and higher mapping uncertainty for these regions. Analysing only the autosomal chromosomes
and removing probes for which no hybridisation signal was obtained, the number of probes remaining
per strain ranges from 209444 (CBA/J) to 209935 (C3H/HeJ), with five of the seven test strains having
≥ 209930 probes remaining.

Figure 3.1 is a cumulative histogram of the distance between neighbouring probes. The median distance
between probes is 5.2 Kb, with 90% of distances < 27.4 Kb, and 99% < 89.3 Kb. The maximum distance
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between neighbouring probes is 3.5 Mb.

3.3 Data exploration

3.3.1 Original data

In figure 2.2 the log2 ratios for all probes across the length of the genome, for A/J versus C57BL/6J, are
plotted. Probes which had lower hybridisation in A/J compared to C57BL/6J have negative log2 ratios
and those with higher relative hybridisation have positive ratios. The profile of A/J is typical of all of
the mouse strains under examination; it appears to be flat , with a ‘shell’ of probes that approach large
absolute ratios across the genome.

Figure 3.2 gives a more detailed view of the log2 ratio profile for several of the chromosomes in A/J. A
range of observed signal variation is depicted, both within and across chromosomes. Some chromosomes,
such as chromosome 10, have very little variation in signal whereas others, such as chromosome 1, have
a lot. Within chromosomes there are often distinct regions with a much higher density ‘shell’ of high
absolute ratios. For example, this is the case at the end of chromosome 1, from 170 to 180 Mb. These
higher density regions give a structured appearance to the signal variance.

A histogram of the log2 ratios in the A/J experiment, and a QQ plot of the ratios versus the standard
normal distribution, are shown in figure 3.3 to help gauge the normality of the distribution of the ratios.
The ‘shell’ of high absolute ratio probes is manifested in the heavy tails of the distribution that is
apparent in both plots. From the histogram it is clear that the negative tail is much heavier than the
positive one. This attribute is discussed later in section 3.4.

To explore the difficulties incurred by the use of such high throughput methods of aCGH, the task of
identifying a region of CNV is discussed briefly. There is a known 480 Kb duplication on chromosome
17 at around 30 Mb. In this example 65 probes are implicated in the duplication in A/J, as compared to
the two or so probes that one would expect to be implicated on a BAC array. With the knowledge that

Figure 3.1: Cumulative histogram of the distance, in 10s of Kb, between neighbouring probes.(The line
goes through the midpoint of each bar in the histogram.)

38



Figure 3.2: Example chromosomal log2 ratio profiles plotted for A/J. Log2 ratios are plotted against
physical probe locations, given in 10s of Mb. Probes for which there was an observed signal from both
A/J and C57BL/6J are plotted in blue. Probes for which a signal was only observed on C57BL/6J are
in red. The latter probes are nominally given a log2 ratio of the minimum ratio observed in the former
set. A range of observed variation is shown on different chromosomes. Chromosome 10 has the least
variation in signal. Chromosomes 9, 15 and 17 display medium amounts of variation, with chromosome
1 having significantly more from 170 Mb onwards. Sometimes, in regions where large absolute ratios are
observed, the large ratios are somewhat sparse in comparison to the density of smaller ratios. This is
true of the start of chromosome 1 (start to 40 Mb), the middle of chromosome 9 (50 to 100 Mb), the
start of chromosome 10 (up to 25 Mb), and large parts of chromosomes 15 and 17. However, there are
often also regions in which there is an increase in the density of the ‘shell’ of higher absolute ratio probes.
This is true, for example, of the region from 170 Mb to 180 Mb on chromosome 1. These regions yield a
more structured appearance, that is to say there are distinct regions which seem to have a much higher
propensity for large absolute ratios than the rest of the genome.
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this large duplication exists, it is easy to locate it by eye in figure 3.2. However, with 10000 probes on
chromosome 17 alone, locating an unknown CNV as large as this would be hard, and it would be near
impossible to detect smaller unknown CNVs by eye. Thus it is clear that an automated process for the
detection of CNVs is especially necessary with very high throughput aCGH data.

In the remainder of this chapter the need for an additional pre-processing step to normalise between
the arrays used within one strain versus C57BL/6J experiment is assessed, and the role of SNPs in the
variation of the signal is explored.

3.3.2 Normalising the data

Each strain versus C57BL/6J ROMA experiment used either 9 or 10 arrays of ∼ 20000 probes to obtain
an overall coverage of ∼ 200000, and the raw signals from each array were normalised within arrays, by
OGT, using locally weighted scatter plot smoothing(lowess). Such normalisation corrects for differences
in labelling and detection efficiencies for the fluorescent labels, and also for differences in the quantities
of genomic DNA from the samples. These factors can cause a shift in the mean ratio of the intensities
from the two labels so the intensities must be re-scaled to account for this before the data is analysed.
While this normalisation has rendered the data within slides comparable, no normalisation has been
performed between slides, so there is no guarantee that log2 ratios from different slides within one
experiment are comparable. Here the requirement for a between slides normalisation is assessed, and a
simple normalisation procedure is proposed.

Observing the bar charts in figure 3.4 it can be seen that each slide contains probes from across the
genome, and that the probes from each chromosome are distributed approximately equally across all
slides. Assuming that most probes in the genome do not lie in regions of CNV (a reasonable assumption
given the distribution of probes seen in figure 2.2 and in the histogram of figure 3.3), this assignment of
probes to slides should mean that the distribution of log2 ratios obtained from all of the slides should

Figure 3.3: Left: Histogram of log2 ratios from the A/J versus C57BL/6J experiment. Right: QQ plot
of log2 ratios, from the A/J versus C57BL/6J experiment, versus standard normal (dotted red line).
Both plots clearly depict the non-normal distribution of the ratios, with heavy tails on both sides of the
distribution, but especially so (as is apparent in the histogram), on the negative side.

40



not be biased by chromosomal origin. However it is possible that there may be slide specific effects.

To assess whether this is the case, box and whisker plots of the log2 ratios from each slide of the A/J
ROMA experiment are shown in figure 3.5. For several of the pairwise comparisons between box and
whisker plots for slides, the medians of the two slides differ at the 5% significance level. Additionally the
whiskers (1.5 times the interquartile range) show that there is sometimes a difference in the size of the
range of values obtained on the slides too. Furthermore a Kruskal-Wallis test, (the rank-randomisation
analogue of the ANOVA), carried out at the 5% level, rejects the null hypothesis that all of the log2

Figure 3.4: Bar charts of the number of probes from each chromosome on each slide. It can be seen that
each slide has a selection of probes from across the genome, and that the probes from each chromosome
are distributed approximately equally across all slides.

Figure 3.5: Box and whisker plots of the log2 ratios of probes in each slide of the A/J versus C57BL/6J
experiment. The lines on the boxes are notches which represent a robust estimate of the uncertainty
about the medians for box-to-box comparison. Boxes whose notches do not overlap indicate that the
medians of the two groups differ at the 5% significance level. This is the case for many of the pairwise
comparisons between slides. The whiskers represent 1.5 times the inter-quartile range, and it can be seen
that the size of the range of values obtained in slides is sometimes different (compare slides 4 and 5, for
example)
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ratios are drawn from the same distribution (see table 3.1).

Figure 3.6: Graph of the multiple pairwise comparisons, between slides, of the log2 ratios from the
A/J versus C57BL/6J experiment. The tests are carried out using the ranks of the probes, rather than
the numeric values, as calculated for the Kruskal-Wallis test described above. Each slide mean rank is
depicted with a circle, and the 95% confidence interval with a line. Two means are significantly different
if their intervals are disjoint, and are not significantly different if their intervals overlap. All of the
pairwise comparisons, except those between slides 2 and 3, and slides 3 and 9, reject the null hypothesis
at the 5% significance level, using Tukey’s honestly significant difference criterion, that the log2 ratios
from the pair of slides come from the same distribution.

Lastly the results of a multiple comparison test, used to show which pairs of slides are significantly
different from one another, are shown in figure 3.6. All of the pairwise comparisons, except those
between slides 2 and 3, and slides 3 and 9, reject the null hypothesis at the 5% significance level, using
Tukey’s honestly significant difference criterion, that the log2 ratios from the pair of slides come from
the same distribution.

It seems desirable, therefore, to normalise slides such that their log2 ratios come from the same distri-
bution. Since lowess normalisation has already been performed to account for variability within slides,
and since the slides have log2 ratios that come from scaled and shifted versions of the same distribution
(see pairwise QQ plots in figure 3.7), it is sensible to simply scale and shift the data to one chosen
distribution. Due to the heavy tails of the distribution, the log2 ratios from each slide are normalised by

Source SS df MS Chi-sq Prob>Chi-sq (p)
Slides 6.3431e+13 9 7.0479e+12 1.7291e+04 0
Error 7.0626e+14 209803 3.3663e+09
Total 7.6969e+14 209812

Table 3.1: Kruskal-Wallis table. Standard ANOVA table calculated using the ranks of the data rather
than the numeric values. (Ranks are found by ordering the log2 ratios from smallest to largest across
all slides. The rank for a tied log2 ratio is equal to the average rank for all ratios tied with it.) The
first column is the source of variability, the second is the sum of squares due to each source, the third
is the degrees of freedom associated with the source, the fourth is the chi-squared statistic (replacing
the F statistic in an ANOVA), and the p-value measures the significance of the chi-square statistic. The
Kruskal-Wallis test rejects the null hypothesis, at the 5% level, that all of the log2 ratios are drawn from
the same distribution.
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Figure 3.7: Pairwise QQ plots, from slides 1 to 4, of the log2 ratios in the A/J versus C57BL/6J
experiment. The straight red line is where quantile-quantile pairs from the two sampled distributions
would lie if the distributions were scaled and shifted versions of one another. The actual quantile-
quantile pairs are plotted as blue crosses. These pairwise plots are representative of all of the pairwise
plots between slides for A/J. In all cases the blue crosses lie very close to the red line, so it is fair
to assume that the log2 ratios from different slides come from scaled and shifted versions of the same
distribution.
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subtracting a robust estimator of the location, and dividing by a robust estimator of the spread; namely
the median and median absolute deviation (MAD) respectively. (Note that quantile normalisation can
be used for between slide normalisation but, since it renders the entire distribution (i.e. not only the
inter-quartile range) of every slide identical, such a normalisation is not appropriate because it could
have the detrimental effect of removing signal from the tails of the distribution, and hence of real CNVs.)

Figure 3.8: Graph of the multiple pairwise comparisons, between slides, of the normalised log2 ratios
from the A/J versus C57BL/6J experiment. Each slide mean rank is depicted with a circle, and the 95%
confidence interval with a line. Two means are significantly different if their intervals are disjoint, and
are not significantly different if their intervals overlap. Far fewer pairwise tests between slides reject the
null hypothesis that the log2 ratios on those slides are from the same distribution.

Figure 3.9: Left: Graph of the multiple pairwise comparisons, between mouse strain experiments, of
the log2 ratios. All tests reject the null hypothesis that log2 ratios from the compared strains come
from the same distribution. Right: Graph of the multiple pairwise comparisons, between mouse strain
experiments, of the normalised log2 ratios. Far fewer pairwise tests between strains reject the null
hypothesis that the log2 ratios for those strains are from the same distribution. However all tests
involving DBA/2J still reject the null hypothesis.

A multiple comparison of the normalised log2 ratios is shown in figure 3.8. Far fewer pairwise hypothesis
tests between slides reject the null hypothesis that the log2 ratios on those slides are from the same dis-
tribution. Additionally, this normalisation makes it easier to directly compare the log2 ratios obtained
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from the different mouse strain ROMA experiments. Figure 3.9 shows the result of the multiple com-
parison test between strains, before and after normalisation. Once again far fewer pairwise tests reject
the null hypothesis. However all the pairwise tests involving DBA/2J still reject the null hypothesis,
so the development of further normalisation techniques, or the use of existing ones, for example those
implemented by Agilent in Genespring, might be required to make the strain data more comparable.
Nonetheless, for current needs this normalisation method is sufficient, and for all further analysis log2

ratios normalised in this way will be used exclusively.

3.4 Analysing the relationship between SNPs and ROMA data

Figure 3.10: Cumulative histogram of the distance, in 100s of Kb, between neighbouring SNPs.(The line
goes through the midpoint of each bar in the histogram.)

A SNP data set is available for mouse strains A/J, AKR/J, BALB/cJ, C3H/HeJ, CBA/J, DBA/2J,
LP/J and C57BL/6J. The data is a combination of 13800 SNPs from the Wellcome-CTC mouse inbred
strain SNP genotype set, and ∼ 140000 SNPs from the BROAD institute, kindly provided by Mark Daly
(http://www.well.ox.ac.uk/mouse/INBREDS). Figure 3.10 shows the histogram of distances between
neighbouring SNPs, mapped to C57BL/6J. The mean distance between SNPs in the data set is ∼ 24
Kb, the median is ∼ 9.2 Kb, with 90% of SNPs less than ∼ 50.9 Kb apart.

3.4.1 Previous discussions on the effect of SNPs on ROMA

In the original paper describing ROMA (Lucito et al., 2003), and in the mouse ROMA paper written
by the same group (Lakshmi et al., 2006), the effect of SNPs within and around probe sequences are
suggested as the main cause of the “shell” of higher log2 ratios observed over the whole genome.

As explained in section 4, in ROMA representations of a genome are made using PCR to amplify
fragments of DNA previously made with a restriction endonuclease. PCR selects short fragments, and
the cleavage sight of the restriction enzyme is known, so the resulting set of representations are short
fragments of DNA that are predictable from the genome sequence and also reproducible. However, as
discussed in both Lucito et al. (2003) and Lakshmi et al. (2006), SNPs in the restriction sight of the
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restriction endonuclease will cause a failure in the fragmentation process such that the corresponding
fragment will not be created, thus appearing as a total deletion; this is one mechanism by which SNPs can
interfere in the ROMA hybridisation signal. A second mechanism by which SNPs interfere with ROMA
hybridisation occurs when there is a SNP within an array probe; this will cause reduced hybridisation,
but the amount by which this will happen is hard to predict. Therefore, since SNP data is available
for the inbred mouse strains, it is necessary to ascertain whether SNPs cause variation in the ROMA
experiment via one of these two mechanisms.

Important work by Wade et al. (2002) has revealed that there is a mosaic structure in the inbred mouse
genome; when two inbred mouse strains are compared to one another “long segments of either extremely
high (∼ 40 SNPs per 10 Kb) or extremely low (∼ 0.5 SNPs per 10 Kb) [SNP] rates” are observed.
Furthermore, there is evidence to suggest that the transition between these regions is sharp. (This
structure is due to the breeding history of inbred mice. In segments where the SNP rate is low “the two
strains share a very recent common subspecies origin”. Conversely, in segments where the SNP rate is
high “the two strains inherited the region from different subspecies”.)

The mosaic SNP segmentation of inbred mouse strains helps elucidate the effect of SNPs on the ROMA
data; by partitioning the ROMA data from two inbred mouse strains, into log2 ratios from probes in
high SNP rate segments and log2 ratios from probes in low SNP rate segments, it is possible to observe
the effect of SNPs (or lack thereof) on the ROMA data. Furthermore it is interesting to assess whether
SNPs, in addition to causing unwanted variance in the hybridisation signal, are also associated with loss
CNVs such that SNPs and loss CNVs occur in the same regions of the genome. These analyses are
presented in the remainder of this chapter.

For simplicity, from here in, segments of the genome between a pair of inbred mouse strains where the
SNP rate is low are termed SNP matched, and segments in which the SNP rate is high are termed
SNP non-matched. Furthermore if one of the pair is the reference strain then the test strain is termed
reference SNP matched in segments of the genome where the test and reference strain are SNP matched.
Similarly, the test strain is termed reference SNP non-matched where the strains are SNP non-matched.
Furthermore, to avoid confusion with terminology already used for aCGH analytical methods, all such
segments are referred to as regions.

3.4.2 Comparison of ROMA data from SNP matched and non-matched re-

gions between pairs of strains

The correlation between ROMA data from the SNP matched regions of a pair of strains is compared
here to the correlation between the ROMA data from their SNP non-matched regions. This comparison
is carried out between all pairs of strains. Figure 3.11 is a schematic of the analysis carried out between
two test strains. First, using an adaptation of SW-array described in section 4.1, box 4.2, SNP matched
and non-matched regions are identified between two strains (in figure 3.11 W and X are SNP matched
between A and B, and Y and Z are SNP non-matched). Next, all of the ROMA data that lie in SNP
matched regions for the two strains (in the diagram these are the log2 ratios corresponding to the first
eight probes), are compared for correlation, and then the ROMA data in SNP non-matched regions
(the last eight probes) are compared. Thus a correlation coefficient between ROMA data from SNP
matched regions between the two strains is obtained, and a corresponding one is obtained for their SNP
non-matched regions.
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Figure 3.11: Schematic of the analysis between one pair of test strains, A and B, for which there is
SNP data (red and blue columns), and ROMA data (yellow and green circles). Also shown is the data
available for the ROMA reference strain, Ref, for which there is only SNP data. All SNPs are bi-allelic,
and therefore the SNP data can be depicted by two colours. If two strains have matching SNPs over a
region of the genome they share the same colour in that segment of the SNP column. Thus, for example,
A and B are seen to have matching SNP values in regions W and X, and non-matching SNP regions in
Y and Z. Conversely, ROMA data can take a continuous range of values, but to simplify the diagram
they have been depicted in only two colours; two probes with the same colour have similar values, and
two probes with different colours have dissimilar values. The ROMA data are given in genome order
and can therefore be assigned to one of the genomic regions according to their location. Finally, the
correlation between ROMA probes from A and B in SNP matched regions W and X is compared to
the correlation between ROMA probes in SNP non-matched regions Y and Z. (Note that the specific
relationship between SNPs and CNVs depicted in the diagram, namely that there is an association,
is only intended as an example of a possible relationship, and at this stage of the discussion does not
represent any conclusions about the actual relationship observed.)
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A scatter plot of the correlation coefficients obtained for ROMA data in SNP matched and non-matched
regions between pairs of test strains is shown in figure 3.12. By observation it is clear that there is a
higher correlation between ROMA data obtained from two strains in their SNP-matched regions than
there is between the ROMA data in their SNP non-matched regions. Furthermore the t-test for difference
of means yields a p-value of 4.8643e−24.

This confirms a relationship between SNPs and ROMA data, but it is not yet possible to discern how
much of the relationship is due to SNPs and CNVs occurring in the same regions of the genome, and
how much of the relationship is due to SNPs causing hybridisation problems in ROMA. Clearly, if
SNPs are associated with CNV then when two test strains are SNP matched they will also share CNV
structure relative to the reference strain, so their ROMA data (which is measuring CNV) will be better
correlated. However, increased correlation between ROMA data from SNP matched regions, as compared
to correlation between data from SNP non-matched regions, can also occur as follows:

In regions where a pair of test strains are SNP matched to one another they must also, (because SNPs
are bi-allelic), share the same reference SNP match and reference SNP non-match regions. This means
that if SNPs interfere with hybridisation in ROMA via the two mechanisms described previously, then in
the regions where test strains are SNP matched they will be subject to the same pattern of hybridisation
problems. In other words the test strains will both have little hybridisation problems when they are
both reference SNP matched, and the same hybridisation problems when they are both reference SNP
non-matched. Conversely, in regions where test strains are SNP non-matched they will not share the
same reference SNP match and non-match structure, and will therefore also have different patterns of
ROMA hybridisation problems. So ROMA data from SNP matched regions will be better correlated
than ROMA data from SNP non-matched regions even if SNPs are not associated with CNV.

Figure 3.12: Scatter plot of the correlation coefficients obtained for ROMA data in SNP-matched and
non-matching regions, between pairs of test strains. The mean correlation of ROMA data from SNP
matched regions is 0.71771, and for SNP non-matched regions is 0.27888. Performing a t-test for difference
of means yields a p-value of 4.8643e−24.
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3.4.3 Further examining the relationship between SNPs and ROMA data

To further explore the nature of the relationship between SNPs and ROMA data another analysis is
carried out here which only uses the ROMA data from SNP matched regions between pairs of test strains.
(Referring to figure 3.11, the combined segment of W and X would be one such region of the genome
for strains A and B.) These regions are divided into regions where both test strains are reference SNP
matched (in the figure, W), and into regions where both test strains are reference SNP non-matched
(X). Next the relationship between ROMA data from reference SNP matched regions is compared to the
relationship between ROMA data from reference SNP non-matched regions. Such a comparison helps
elucidate the nature of the relationship between SNPs and ROMA data.

Figure 3.13: Predicted scatter plots between ROMA data from the SNP matched regions between a pair
of test strains. Three scenarios are shown: Left: SNPs cause hybridisation problems in ROMA but are
not otherwise associated with CNVs. Middle: SNPs are associated with CNVs such that they occur in
the same regions of the genome. Right: SNPs cause hybridisation problems in ROMA and occur in the
same regions of the genome as CNVs. Each scenario has two predicted scatter plots: the top plot is for
ROMA data from regions where both the test strains are reference SNP matched; and the bottom plot
is for ROMA data from regions where both the test strains are reference SNP non-matched.

Three types of relationship between SNPs and ROMA data are possible: SNPs cause hybridisation
problems in ROMA; SNPs are associated with CNVs such that they occur in the same regions of the
genome; SNPs cause hybridisation problems in ROMA and occur in the same regions of the genome as
CNVs.

Expected scatter plots of ROMA data, from two test strains, from regions of the genome where the test
strains are SNP matched to one another are shown in figure 3.13. Two scatter plots are predicted for
each of the above scenarios; one for ROMA data from regions of the genome where both test strains are
reference SNP matched, and one for ROMA data from regions of the genome where both test strains are
reference SNP non-matched.

If SNPs only cause hybridisation problems in ROMA and are not associated with CNVs such that they
lie in the same regions of the genome (figure 3.13, left), then a spread of log2 ratios, from very low to very
high, is expected regardless of whether or not the test strains are reference SNP matched or reference
SNP non-matched. A cloud of log2 ratios whose values are not well correlated is predicted in the latter
plot because, as explained previously, SNPs within probes will cause a reduction in hybridisation, but
the amount by which this will occur is hard to predict and not necessarily systematic. Also note that
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because SNPs can only cause a decrease in hybridisation, an increase in the density of probes with low
log2 ratios is also predicted in the latter plot, with a corresponding reduction in the density of positive
log2 ratios.

If SNPs are associated with CNVs such that they lie in the same regions of the genome, but they do not
cause hybridisation problems in ROMA (middle), then when the test strains are reference SNP matched
they should both have log2 ratios around zero, and when they are both reference SNP non-matched they
should both have low and high log2 ratios, and very few ratios around zero. Note that these plots are
based on the scenario in which SNPs and CNVs only occur in the same regions. Clearly if this were not
the case then there would be some high and low log2 ratios in the SNP match plot, and some near zero
log2 ratios in the SNP non-match plot.

Finally, if SNPs cause hybridisation problems and are also associated with CNV (right), then when both
strains are reference SNP matched they should have log2 ratios clustered around zero, and when they
are both reference SNP non-matched they will both have low and high log2 ratios. Once again, as for
the first scenario (left), a cloud of log2 ratios whose values are not well correlated is predicted in the
reference SNP non-matched plot. Also in this plot, as in the first scenario, an increase in the density of
probes with low log2 ratios is predicted, with a corresponding reduction in the density of positive log2

ratios. Furthermore, some log2 ratios around zero are expected when probes in gain CNV regions have
some, but not all, of their hybridisation reduced.

Figure 3.14: Three pairs of scatter plots observed in the real pairwise test strain comparisons that are
typical of the types of plots seen over all of the pairwise comparisons. Left to right: AKR/J vs A/J,
LP/J vs C3H/HeJ and DBA/2J vs CBA/J. Top: ROMA data from regions where the two test strains
are SNP matched to each other and are both reference (C57BL/6J) SNP matched. Bottom: ROMA
data from regions where the two test strains are SNP matched to each other and are both reference SNP
non-matched.

Figure 3.14 shows three pairs of scatter plots, observed in the real pairwise test strain comparisons, which
are representative of the types of plots seen over all of the pairwise comparisons. All the plots show a
clustering of log2 ratios around zero when test strains are reference SNP matched, and a noticeable
increase in the spread of values when the test strains are reference SNP non-matched. However while
all pairwise comparisons show a small increase, in the reference SNP non-matched regions, of probes
with a high positive log2 ratio, the majority of the increase is in the negative direction. Referring to the
discussion of figure 3.13, these plots are indicative of both an association between SNPs and CNVs, and
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also SNPs as a source of hybridisation failure in the ROMA experiment.

In all three of the reference SNP matched region plots, a small number of probes have well correlated large
absolute log2 ratios. In all three of the reference SNP non-matched region plots there are many probes
with near zero log2 ratios (perhaps more than would be expected due to gain CNV probes containing
SNPs). These observations suggest that although there is an association between SNPs and CNVs, the
two phenomena do not always occur in the same regions of the genome.

The pairwise scatter plots between A/J and AKR/J, and C3H/HeJ and LP/J show clusters of log2 ratios
that have large negative values in one of the test strains but not in the other. Such clusters occur mainly
in the regions where the test strains are reference SNP non-matched, but they also occur in the reference
SNP matched regions. This pattern was not depicted in the predicted scatter plots shown in figure 3.13,
and is most likely due to another source of hybridisation failure, or a mis-classification of regions in the
test strains as SNP matched or SNP non-matched to each other or to the reference strain. Such sets of
probes also exist in the pairwise comparison between CBA/J and DBA/2J, but they are not as distinct
due to the additional cloud of probes whose values are not as well correlated between the test strains.
This cloud of log2 ratios probably occurs because SNPs within probes cause a reduction in hybridisation,
the magnitude of which is hard to predict and not necessarily systematic.

These findings motivate a threshold based CNV discovery method, discussed in the next chapter, which
sets thresholds for ROMA data dependent on whether they come from reference SNP matched or non-
matched regions; higher thresholds are set in the reference SNP non-matched regions, (compared to those
set in the reference SNP matched regions), to account for the proportion of the variance seen in them
that is due to SNPs. The results also indicate that search strategies which use data about known SNPs
and CNVs in one strain to inform the search for CNVs in another are feasible and potentially powerful.
Such ideas, discussed further in future work, will form an extension to methods discussed here.
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Chapter 4

ROMA data analysis

4.1 Excursion Finder

A nonparametric thresholding method for CNV detection, which searches for runs of probes whose log2

ratios lie above or below a set threshold (excursions), Excursion Finder, is presented here.

As explained in section 3.4, a SNP data set is available for the mouse strains tested in the ROMA
experiment described in chapter 3. Excursion Finder (EF) is novel because it integrates this SNP data
with the ROMA data. In the first part of the algorithm each test strain is compared to the reference strain
to find their SNP matched and non-matched regions. Next, with the aim of explaining that proportion
of the variance in the ROMA data which is due to SNPs, different thresholds are set for the ROMA data
in the SNP matched and non-matched regions; higher thresholds are set in the non-matched regions to
account for the extra SNP-caused variance observed in them. The algorithm is detailed in boxes 4.1 and
4.2 and a schematic diagram of the algorithm is shown in figure 4.3. Finally a permutation algorithm,
explained in box 4.4 and figure 4.5, is used to estimate an empirical null distribution of excursion lengths.
(This method is based on a similar premise to that of the permutation test used in Price et al. (2005);
that successive excursions lengths from the permuted data approximate the null distribution of excursion
lengths.) The null distribution is then used to assess the significance of excursions located by EF.

4.1.1 EF results

EF is used here to analyse the mouse ROMA data in conjunction with the available SNP data. All of
the located putative CNVs are available on-line at http://gscan.well.ox.ac.uk/gscan/wwwqtl.cgi, where
they can be viewed simultaneously with SNP distribution patterns and QTLs in the mouse strains.

Using an empirical null distribution estimated by the permutation algorithm in box 4.4 with the “guess
threshold” for the length of real excursions set to 4, EF yields putative loss CNVs with probe lengths
ranging from 3 to 14, and gain CNVs with probe lengths ranging from 3 to 45. The median probe length
for both types of CNV is 3. The 75th percentile is 4 and 3 for loss and gain CNVs respectively. The
95th percentile of probe lengths is 5 for both, and the 99th is 8 for both. Minima, maxima, means and
percentiles of the lengths of loss and gain CNVs found by EF are given in table 4.1.
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EF algorithm

For each test strain:
1. Find all reference SNP matched and non-matched regions using the SNP

matching algorithm in box 4.2.
2. Find the Rth percentile, where 0 < R < 50, and the Qth percentile, where
Q = 100 − R, of all ROMA data in all reference SNP matched regions
across the whole genome. tmlower and tmupper are assigned these values
in order, and are respectively the lower and upper thresholds for loss and
gain CNV in regions of the test strain that are reference SNP matched
to C57BL/6J.

3. Find the Rth percentile, where 0 < R < 50, and the Qth percentile,
where Q = 100−R, of all ROMA data in all reference SNP non-matched
regions across the whole genome. tnlower and tnupper are assigned these
values in order, and are respectively the lower and upper thresholds for
loss and gain CNV in regions of the test strain that are reference SNP
non-matched.

4. For each set of ROMA data in a reference SNP matched region, search for
all excursions of probes in which all probes have a log2 ratio< tmlower.
Keep all excursions whose length is significant at the 5% level according
to the permuted null distribution of lengths of excursions (see box 4.4).
These excursions are then the putative regions of loss CNV in reference
SNP matched regions.

5. For each set of ROMA data in a reference SNP matched region, search for
all excursions of probes in which all probes have a log2 ratio> tmupper.
Keep all excursions whose length is significant at the 5% level according to
the permuted null distribution of lengths of excursions. These excursions
are then the putative regions of gain CNV in reference SNP matched
regions.

6. Repeat steps 4 and 5 for the reference SNP non-matched regions.

Box 4.1: EF: a threshold based CNV detection algorithm that integrates SNP data into the threshold
setting process.

EF SW-ARRAY
Loss CNV Gain CNV Loss CNV Gain CNV

min 0.37 0.51 9 3
max 4107 544 15086 452
mean 34 36 1808 175
median 15 22 899 111
10 2 5 141 20
25 6 10 322 28
75 31 47 1938 307
90 67 84 4103 451563
95 106 113 8318 “”
99 304 192 13807 “”

Table 4.1: Minima, maxima, means and percentiles of lengths (in Kb) of loss and gain CNVs found by
EF (left) and SW-ARRAY (right).
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SNP matching algorithm

For any two strains, A and B, with arrays of SNP values on each chro-
mosome Asnp and Bsnp indexed by i:
For each chromosome:

1. Calculate a comparison array, compAB , where:

compAB(i) = (Asnp(i) == Bsnp(i)), (4.1)

2. Subtract a threshold t0, where 0 < t0 < 1, from each element in compAB :

adj compAB(i) = compAB(i)− t0 (4.2)

Thus matches are rewarded with a score of 1 − t0 and the non-matches
are penalised with a score of 0− t0. The mean of the adjusted scores in
adj compAB must be negative.1

3. Find all high-scoring islands in adj compAB using the one dimensional
Smith-Waterman algorithm described in section 2.8.

4. Choose all high scoring islands whose length is ≥ the number of matches
required to overcome one non-match in an island of matches2. These are
the SNP matched regions.

5. The SNP non-matched regions are then all regions of the genome in be-
tween matched regions, plus the region between the start of the chromo-
some and the first matched region, and the region between the end of the
last matched region and the end of the chromosome.

Notes
1. Because there are only two values that an element of adj comp can take,
t0 gives direct control over the minimum length of a contiguous run of
matches required to overcome exactly one non-match. For example if
t0 = 0.9 the reward for a match is 0.1 and the penalty for a non-match
is −0.9. This means that 10 matches are required to overcome exactly
one non-match. With 9 matches required for every non-match thereafter.
Choosing t0 is therefore an heuristic process dependent on the effect of
non-matches in a “matched” region versus the requirement for a smooth
segregation of the genome that does not switch too rapidly from matched
to non-matched.

2. In Price et al. (2005) the statistical significance of islands is estimated
by permutation. However since the desired required length for a con-
tiguous run of matches to overcome a non-match is already determined
and implemented through t0, it is sensible to use this same length as the
threshold for accepted matched regions.

Box 4.2: SNP matching algorithm: an adaptation of the one dimensional Smith-Waterman algorithm
(Price et al. (2005)) for the location of SNP matched and non-matched regions between two strains.

54



EF locates 5266 CNV loss regions across all seven test strains, and 2450 gain regions. The number of
loss regions per strain ranges from 668 (BALB/cJ) to 845 (AKR/J). The number of gain regions per
strain varies from 258 (A/J) to 493 (LP/J). The percentage of the C57BL/6J genome that is CNV with
each of the test strains is found to vary from 0.75% (LP/J) to 1.42% (C3H/HeJ) in the loss regions, and
from 0.29% (C3H/HeJ) to 0.83% (LP/J) in the gain regions. (Note that although C3H/HeJ and LP/J
suggest a trend for negative correlation between percentage of genome in CNV loss and percentage in
CNV gain, in general over all the strains no such correlation is seen (correlation coefficient = −0.3993)).
See table 4.2 for all such statistics for each strain.

EF locates more loss CNVs than gain CNVs

EF locates more loss CNVs than gain CNVs. This is more likely due to the nature of the ROMA data,
which has a much lower density of positive log2 ratios than near zero or negative values, than to the
method itself. As explained in section 3.4, the low density of positive signal, (and hence the high density
of negative signal), is due to SNPs in the restriction endonuclease site causing the removal of fragments
from the genome representation, and also due to SNPs in the probes causing reduced hybridisation. The
signals from true gain CNVs might well be removed by this SNP interference process, thus causing an
increase in the false negative rate of gain CNV calls. Comparisons to SW-ARRAY in section 4.3 show
that SW-ARRAY also has problems detecting gain CNVs, hence corroborating the theory that it is the
data, rather than the methods, that is the limiting factor in locating gain CNVs.

EF detects a small percentage of pairwise CNV between strains

The results also suggest that there is only a small amount of pairwise CNV between inbred mouse strains.
However it may be the case that larger proportions of the mouse genome are in pairwise CNV, but that
while EF is good at locating many small regions of CNV, it is not capable of overcoming the variation in

Figure 4.3: Schematic diagram of the EF algorithm. Top: Find reference SNP matched and non-matched
regions between the test strain, A, and the reference strain. Here V, X and Z are reference SNP matched,
and W and Y are reference SNP non-matched. Bottom: Split the ROMA data for A accordingly. Find
upper and lower thresholds in reference SNP matched and non-matched regions (pink in SNP matched,
green in SNP non-matched). Locate excursions of probes that exceed the threshold and whose length is
significant with reference to a permutation based null distribution of excursion lengths (highlighted in
red). (Note that the ROMA data shown is a segment of chromosome 17 from the A/J versus C57BL/6J
experiment. However the thresholds and excursions depicted are not real.)
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Permutation algorithm

For each strain:
1. Find reference SNP matched and non-matched regions.
2. Calculate (tmlower, tmupper) and (tnlower, tnupper) for the ROMA data

from reference SNP matched and non-matched regions respectively.
3. Find all excursions of probes, below the lower thresholds and above the

upper thresholds, in ROMA data from reference SNP matched and non-
matched regions.

4. Remove from the ROMA data all probes that are members of excursions
with length > a “guess threshold”.1

5. Recalculate (tmlower, tmupper) and (tnlower, tnupper) for the remaining
ROMA data from the reference SNP matched and non-matched regions
respectively.

6. Repeat the following many times:
(a) Combine all ROMA data from matched regions.
(b) Permute
(c) Split the permuted data into null matched regions that are the same

in size and number as the original matched regions (after removal of
excursions)

(d) Repeat steps a, b and c for non-matched regions
(e) Find all excursions of probes, below the lower thresholds and above

the upper thresholds, in ROMA data from null SNP matched and
null non-matched regions.

(f) Store the frequencies of the lengths of excursions found under all
four conditions (high and low excursions in reference SNP matched
regions and high and low excursions in reference SNP non-matched
regions). The total of all of these across all permutations will consti-
tute the four null distributions of excursion lengths for this strain.

Notes
1. The “guess threshold” is a very rough estimate of the likely length of an

unbroken excursion when there is an underlying CNV. This step is used
to remove all log2 ratios that are actually due to CNVs before permuting
for a null distribution of excursion lengths when there are no CNVs.

Box 4.4: Permutation algorithm: an algorithm that estimates an empirical null distribution of excursion
lengths.
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Figure 4.5: Schematic diagram of the permutation algorithm for the null distribution of excursion lengths.
1: Find reference SNP matched and non-matched regions between the test strain, A, and the reference
strain. Here V, X and Z are reference SNP matched, and W and Y are reference SNP non-matched. 2:
Split the ROMA data for A accordingly. Find upper and lower thresholds in reference SNP matched and
non-matched regions (pink in SNP matched, green in SNP non-matched). Locate excursions of probes
that exceed the guess threshold (highlighted in red). 3: Remove the excursions from step 2. Permute the
ROMA data; this is the null ROMA data. Recalculate thresholds. 4: For both types of region and both
types of threshold count the number of excursions of length 1, 2, ...,max where max is the maximum
excursion length observed. Repeat the last step for each permutation to estimate the null distribution
of excursion lengths.
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ROMA data to locate large regions of CNV whose signal is disrupted by outliers. Indeed, EF can only
detect large disrupted CNVs as a series of nearby small CNVs with gaps in between them, and these gaps
might well represent a large quantity of lost CNV signal. In section 4.3 EF is compared to SW-ARRAY
to assess the relative strengths of the two methods in terms of locating small and large regions of CNV.

Are loss CNVs more commonly found in reference SNP non-matched regions?

EF SW-ARRAY
Strain Loss CNV Gain CNV Loss CNV Gain CNV

Freq % CNV Freq % CNV Freq % CNV Freq % CNV
A/J 772 1.02% 258 0.31% 83 4.74% 4 0.03%
AKR/J 845 1.17% 662 0.77% 100 8.52% 8 0.05%
BALB/cJ 668 0.93% 511 0.54% 95 4.04% 2 0.02%
C3H/HeJ 789 1.42% 680 0.29% 111 8.18% 3 0.03%
CBA/J 809 1.11% 645 0.56% 75 7.27% 5 0.03%
DBA/2J 683 0.96% 606 0.30% 114 8.90% 4 0.03%
LP/J 700 0.75% 588 0.79% 100 8.13% 5 0.03%

Table 4.2: Total number of loss and gain CNVs found (relative to C57BL/6J) in each test strain, by EF
(left) and SW-ARRAY (right). The percentage of the C57BL/6J genome in CNV with the test strains
is also shown.

The proportion of each test strain genome that is SNP matched to C57BL/6J is given in table 4.3. To
assess whether loss CNVs in test strains are more commonly found in reference SNP non-matched regions
than in reference SNP matched regions, the following proportions are calculated for each test strain:

• The proportion of the SNP matched reference genome identified as loss CNV in the test strain.

• The proportion of the SNP non-matched reference genome identified as loss CNV in the test strain.

(Where SNP matched reference genome corresponds to that part of the reference genome that is SNP
matched to the test strain in question. Similarly for the SNP non-matched reference genome.)

Table 4.4 gives the resultant proportions. A one sided t-test rejects the null hypothesis (p = 4.6e−5) that
the mean proportions are the same, in favour of the alternative that the mean proportion of the SNP

non-matched reference genome identified as loss CNV is greater than the mean proportion of the SNP

matched reference genome identified as loss CNV.

Strain % SNP matched to C57BL/6J
A/J 30.41
AKR/J 39.58
BALB/cJ 38.65
C3H/HeJ 33.73
CBA/J 32.29
DBA/2J 30.55
LP/J 31.28

Table 4.3: Proportion of each test strain genome SNP matched to C57BL/6J.

The corresponding proportions for gain CNVs are given in table 4.5. A two sided t-test does not reject
the hypothesis that the mean proportions are the same (p value of 0.54). So there is no evidence to
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suggest that gain CNVs are more commonly found in reference SNP matched regions than in reference
SNP non-matched regions.

Strain % of SNP match % of SNP non-match
identified as loss CNV identified as loss CNV

A/J 0.41% 1.29%
AKR/J 0.93% 1.32%
BALB/cJ 0.67% 1.10%
C3H/HeJ 0.64% 1.82%
CBA/J 0.41% 1.45%
DBA/2J 0.32% 1.24%
LP/J 0.37% 0.93%

Table 4.4: Proportion of the SNP matched reference genome (left), and SNP non-matched reference
genome (right), identified as loss CNV in each test strain.

Strain % of SNP match % of SNP non-match
identified as gain CNV identified as gain CNV

A/J 0.24% 0.33%
AKR/J 0.93% 0.66%
BALB/cJ 0.59% 0.51%
C3H/HeJ 0.30% 0.28%
CBA/J 0.62% 0.54%
DBA/2J 0.25% 0.31%
LP/J 1.00% 0.70%

Table 4.5: Proportion of the SNP matched reference genome (left), and SNP non-matched reference
genome (right), identified as gain CNV in each test strain.

The results for loss CNVs might be caused by a positional association of SNPs and loss CNVs (that is,
that they occur on the same parts of the genome). Alternatively, if SNPs are interfering with the ROMA
method by one of the mechanisms described in section 3.4, the results might be due to a, potentially,
increased false positive rate in the reference SNP non-matched regions.

4.2 Combining regions of CNV across strains

The false positive rate (FPR) of EF needs to be assessed. In the absence of a “gold standard” genome
and/or experimental verification of putative regions of CNV this poses a hard problem. At the time of
writing, FISH, PCR and MLPA experiments are under way to assess the method, but no results are yet
available. Therefore the following is carried out here as a first, somewhat coarse, approach to quantifying
the FPR.

By combining putative regions of CNVs into CNV sets (CNVSs), which are composed of CNVs located
in similar positions on different strains, it is possible to find CNVs that are only found on one strain
(singleton CNVSs), and highlight these as more likely false positives. The main premise behind this
approach is that the more strains on which a CNV appears, the more evidence there is for it, and the
more likely it is to be real; so singleton CNVSs are the most likely candidates for false positives because
there is less evidence for them.
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The combing algorithm developed for this task is depicted schematically in figure 4.6 and outlined in
box 4.7.

Figure 4.6: Schematic of the CNV combining algorithm. First find a set of CNVSs such that in every
CNVS each member CNV overlaps all other member CNVs, and such that all CNVs appear in at least
one CNVS. Here there are four such CNVSs, blue (made of CNVs 1, 2, 3 and 4 in strains A, B, C and D
respectively), red (5, 6, 7, on A, C, D), green (8, 9 , 10 on A, C, D) and black (11, 12, 13, 14 on A, B, C,
D). The CNVSs are depicted here in order of their start points on the genome. The merging procedure
will merge the blue CNVS and the red CNVS because CNVs 2 and 6 overlap. Then the green CNVS
will be merged with the new merged blue/red CNVS because strain D has CNVs 7 and 10 very close to
one another. The black CNVS will not be merged with the new blue/red/green CNVS because neither
of the merging requirements are satisfied.

4.2.1 CNVS Results

To find the largest possible set of singleton CNVSs the combining algorithm has been run with a close
threshold of 0. Loss and gain CNVs have been analysed and grouped separately. The frequency of
singleton, double, triple, and so forth, CNVSs are shown in table 4.6.

Loss CNVSs Gain CNVSs
Size Freq # CNVs Size Freq # CNVs
1 1634 1634 1 1310 1310
2 435 870 2 290 580
3 288 864 3 108 324
4 140 560 4 37 148
5 99 495 5 6 30
6 75 450 6 2 12
7 44 308 8 1 8
8 2 16 13 1 13
9 3 27 25 1 25
10 2 20 - - -
11 2 22 - - -
Total 2724 5266 1756 2450

Table 4.6: Frequency table of CNVS sizes for loss CNVs (left), and for gain CNVs (right). The number
of CNVs included in each CNVS size category is also given (this is just size ∗ freq).

1634/5266 (31%) of loss CNVs are not overlapped by CNVs on other strains, and therefore form singleton
CNVSs. The remaining 3632 (69%) loss CNVs can be grouped into CNVSs of at least two CNVs.
1310/2450 (53%) of gain CNVs form singleton CNVSs, leaving 1140 (47%) CNVs that can be grouped
into bigger CNVSs.
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CNV combining algorithm

For each chromosome:
1. Initialise an empty list, sets, to hold all sets of CNVs that overlap each

other.1

2. For each CNV on the chromosome, found on any strain:
(a) Add CNV to all sets of CNVs in which all member CNVs overlap

the current CNV.
(b) If no such set exists find all non-empty subsets in which all member

CNVs overlap the current CNV. Add these subsets to sets
(c) If no such subsets exist create a new singleton set consisting of the

CNV.

3. Sort sets in ascending order of the start attribute. This gives the ordered
list ordered sets

4. Merge the sets in ordered sets from left to right as follows:
5. For each set in ordered sets (except the last):

(a) Call the current set X and the next set in ordered sets Y .
(b) If end of X ≥ start of Y then merge the sets.2

(c) Else if any strain has a CNV in both X and Y , and the CNVs are
less than a threshold close apart, then merge the sets.3

(d) Otherwise leave X and Y as separate sets.

Notes
1. Each CNV in each set has three attributes: strain, cnv start and
cnv end. Each set of CNVs has three attributes: start, end, and cnv list.
The start and end of a set are respectively defined as the minimum of all
cnv starts in the set, and the maximum of all cnv ends in the set.

2. Merge two sets in ordered sets by removing both the sets from the list
and replacing them with one set that has as its cnv list the union of the
two original cnv lists. Set start and end of the set accordingly.

3. The threshold close is set heuristically and depends on the desired gran-
ularity of the sets. It is useful to think of this threshold in terms of both
the distance between probes (and hence the number of probes with no
extreme signal that can be overcome to combine two CNVs), and also
in terms of the proportion of a CNV set likely to be composed of actual
putative CNV, versus the proportion of “glue” regions of genome that
have not been found to be implicated in CNV.

Box 4.7: CNV combining algorithm: an algorithm that groups overlapping regions of CNV into CNV
sets (CNVSs).

The number of singleton CNVSs, and hence potential false positives, is large. However it is worth noting
that, for the loss CNVSs at least, particularly with the strict setting of close to 0, the assumption that all
singleton CNVSs represent false positives gives a very cautious estimate of the FPR. Thus the proportion
of singleton CNVSs that cannot be verified experimentally will provide an improved estimate.

Unfortunately the number of singleton gain CNVSs is extremely large, so it is likely that there are many
false positive gain CNVs. As will be shown in the next section, SW-ARRAY also has many problems
locating gain CNVs, so either a novel method is required to robustly estimate regions of gain CNVs in
this ROMA data set, or a new experimental approach is necessary.
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4.3 Comparison to SW-ARRAY

SW-ARRAY is used here to analyse the mouse ROMA data. All of the located putative CNVs are
available on-line at http://gscan.well.ox.ac.uk/gscan/wwwqtl.cgi, alongside the results from EF.

In Price et al. (2005) a pre-processing step to remove outliers from the data is suggested. However due to
the non-normality of the ROMA data, especially in the negative tail of the distribution, a well reasoned
and appropriate threshold for outliers is not clear, so in this initial SW-ARRAY analysis outliers have not
been removed, and instead the input for the algorithm is just the ROMA data normalised as discussed
in section 3.3.2.

Because SW-ARRAY is designed to locate contiguous sequences of predominantly high (low) values,
while allowing for small numbers of probes in those sequences that are not high (low), the algorithm has
identified runs of probes that are longer than those located by EF. SW-ARRAY finds loss CNVs that
are between 4 and 1500 probes long, and gain CNVs that are between 2 and 66 probes. The median
probe lengths are 79 and 10 for loss and gain CNVs respectively, and the 95th percentiles are 539 and
65 respectively.

Minima, maxima, means and percentiles of the lengths of loss and gain CNVs found by SW-ARRAY are
given alongside those located by EF in table 4.1. Observing the mean and percentiles of the distribution
of excursion lengths found by the two methods, it can be seen that those located by SW-ARRAY are a
lot longer than those found by EF. Again, this is as expected due to SW-ARRAY’s ability to overcome
more variance in the ROMA data than EF can.

Turning next to the number of excursions found by SW-ARRAY, and the percentage of the genome
that they cover (see table 4.2) it becomes apparent that although SW-ARRAY finds less loss CNVs
than EF (607 compared to 5266), the percentage of the genome covered by loss CNVs is found to be
much higher; so SW-ARRAY finds fewer but longer loss CNVs than EF. Once more, this is as expected
since a large CNV reported by SW-ARRAY will most likely be reported as many small nearby CNVs
by EF. Interestingly the same behaviour is not seen for gain CNVs; although it is still the case that
far fewer regions are found by SW-ARRAY than by EF (only 31 are found across all test strains), the
percentage of the C57BL/6J genome found to be covered by them, (0.02% to 0.05% across test strains),
is approximately an order of magnitude less than that found to be covered by the EF gain CNVs. It is
not clear whether the discrepancy between the two methods is due to false negatives in SW-ARRAY or
false positives in EF. However it seems likely that both methods are being affected by the nature of the
ROMA data which, as discussed previously, has a low density of positive signal which is bound to cause
an increase in the false negative rate in gain CNV calls.

In a final comparison of EF and SW-ARRAY, CNVs have been combined across strains and methods
to form new CNVSs (see table 4.7). Out of 607 loss CNVs located by SW-ARRAY only 10 are found
to form singleton CNVSs when combined with the EF CNVs. Additionally, only one double and one
triple of SW-ARRAY loss CNVs are not overlapped by EF CNVs. Therefore most of the SW-ARRAY
loss CNVs are corroborated by EF. Similarly, out of 31 gain CNVs found by SW-ARRAY only 2 form
singletons; the rest are overlapped by EF gain CNVs.

Combing SW-ARRAY and EF also corroborates more of the EF loss CNVSs. The number of singleton
EF loss CNVSs is reduced from 1634 to 887, thus lowering the putative FPR for EF loss CNVs from 31%
to 17% (887/5266). Validation of these 887 CNVs will provide a better estimate of the FPR. It will also
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be interesting to assess the nature of the 1023 EF loss CNVs that overlap one another in CNVSs of size
2 − 7, but are not identified by SW-ARRAY. Such a study will help characterise the relative strengths
and weaknesses of the two methods.

Unfortunately the gain CNVs found by SW-ARRAY provide almost no extra evidence for the EF gain
CNVs (the singleton EF gain CNVSs are only reduced from 1310 to 1298). Once again it is impossible
to determine which of the methods is correct (ie. whether the problem is one of EF false positives or
SW-ARRAY false negatives), therefore further analysis is required or the characterisation of gain CNVs
in the mouse genome.

Loss CNVSs Gain CNVSs
Size Freq EF SW-ARRAY Both Size Freq EF SW-ARRAY Both
1 897 887 10 0 1 1300 1298 2 0
2 203 186 1 16 2 289 288 0 1
3 115 97 1 17 3 105 104 0 1
4 57 36 0 21 4 35 33 0 2
5 36 19 0 17 5 10 6 0 4
6 28 12 0 16 6 3 1 0 2
7 21 7 0 14 8 2 0 0 2
8 12 0 0 12 13 1 0 0 1
9 7 0 0 7 51 1 0 0 1
10 9 0 0 9 - - - - -
11-20 56 0 0 56 - - - - -
21-30 21 0 0 21 - - - - -
31-40 8 0 0 8 - - - - -
41-50 5 0 0 5 - - - - -
> 51 17 0 0 17 - - - - -
Total 5944 1244 12 236 2481 1730 2 14

Table 4.7: Frequency table of CNVS sizes for loss CNVs (left), and for gain CNVs (right), after combining
CNVs across strains and methods. Within each category of CNV (loss and gain), the total frequency for
each CNVS size is given, and this is broken down into subtotals for the frequency of that size of CNVS:
composed only of CNVs found by EF; composed only of CNVs found by SW-ARRAY; and composed of
CNVs found by both methods.

4.4 Analysing the relationship between CNVs and QTLs

Using a genetically heterogeneous stock (HS) of mice descended from C57BL/6J and the seven test
strains, small effect quantitative trait loci (QTL) have previously been fine-mapped to the C57BL/6J
genome (Solberg et al. (2006), Valdar et al. (2006a), Valdar et al. (2006b)). The phenotypes that were
studied target three diseases: anxiety, type II diabetes and asthma. Of interest is the relationship
between CNVs and QTLs. Therefore a permutation test for the significance of the overlap between
QTLs and putative CNVSs (from the combination of EF and SW-ARRAY outputs) is developed here.
The algorithm is described in box 4.8 and a schematic of the algorithm is shown in figure 4.9.

4.4.1 QTL permutation test results

To reduce the chance of using false positive CNVs in this part of the analysis, the QTL permutation test
is carried out using CNVSs that are either:
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QTL permutation test

For each phenotype:
1. For each QTL:

(a) Calculate the proportion of the 95% confidence interval that is over-
lapped by a CNVS.

2. Calculate the mean CNV coverage across all QTLs for this phenotype.
3. Initialise extreme overlap = 0 to store the number of times that boot-

strapped QTLs for this phenotype have more overlap by CNVs than the
real QTLs.

4. Repeat N times (where N is large):
(a) Permute the QTL 95% confidence intervals. No overlaps permitted.
(b) Go through each bootstrap QTL:

i. Calculate the proportion of the bootstrap 95% confidence inter-
val that is overlapped by a CNVS.

(c) Find the mean CNV coverage across all bootstrapped QTLs for this
phenotype.

(d) If the mean is more extreme than that of the real mean overlap then
extreme overlap+ = 1

5. Divide extreme overlap by N to give the permutation based p-value for
this phenotype’s QTLs.

Box 4.8: QTL permutation test: an algorithm for calculating the amount of QTL overlapped by CNVs,
and for calculating the significance of this overlap.

Figure 4.9: Schematic of the QTL permutation test. Top: QTLs for phenotype 1 (pink), QTLs for
phenotype 2 (purple), CNVSs (blue), spread over 3 chromosomes (red). Overlap of QTLs by CNVSs
are highlighted with black dashed lines. Some overlap by CNVSs is seen for both sets of QTLs. Middle:
the first iteration of the permutation test for Phenotype 1 QTLs. Note that all three QTLs have been
repositioned, and that the CNVSs have remained in their original position. In this iteration there is less
overlap by CNVSs for the bootstrap QTLs than there was for the real QTLs, so the extreme overlap
variable is not incremented. Bottom: the second iteration of the permutation test for Phenotype 1 QTLs.
This time more overlap is seen for the bootstrapped QTLs than for the real QTLs, so extreme overlaps
is incremented by 1. When all the permutations are finished for phenotype 1 the permutation test will
be repeated for phenotype 2, etc.
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• composed of CNVs found in at least two different strains or methods;

• or have at least three member CNVs.

Since the median distance between probes is ∼ 5 Kb, 25% of the time 10 Kb will be enough to merge
two CNVSs that are separated by one probe (because there is a probability of 0.5 that one inter CNV
space is ≥ 5 Kb, and a separation by one probe counts as two inter-CNV spaces on either side of it).
Furthermore, looking at the distribution of lengths of CNVs found by EF and SW-ARRAY, it is clear
that an inter-CNV space of 10 Kb in a CNVS is very unlikely to be larger than the true CNVs being
merged. Therefore the merging threshold close has been set to a conservative 10 Kb.

Phenotype % Mean overlap of QTL Related to Phenotypes
1 Biochem: Creatinine 49% 2, 5
2 Biochem: Urea 40% 1
3 PM: Open Arm Distance 37% 4, 6
4 PM: Open Arm Entries 42% 3, 6, 7, 10
5 EPM: Open Arm Latency 38% 6
6 EPM: Open Arm Time 41% 3, 4, 6, 7
7 Haem: MCV 40% 4, 6
8 Haem: MPV 49% 9, 10
9 Haem: WBC 38% 8
10 Imm: PctCD3 35% 4, 8

Table 4.8: Phenotypes with QTLs which are significantly overlapped by CNVs at the 5% level.

Out of 96 phenotypes the QTL permutation test finds 10 with QTLs which are significantly overlapped
by CNVs at the 5% level (see table 4.8). This is a little more than expected by chance. However, some
of the phenotypes are related to one another and have overlapping QTLs, thus reducing the set to ∼ 5
truly differing phenotypes. Therefore, thus far there is no evidence for an association between CNVs and
QTLs.

4.5 Analysing the relationship between CNVs and eQTLs

Treating gene expression as a phenotype, expression QTLs (eQTLs) have also been identified for the HS
mice and mapped to C57BL/6J (work not published). In a final analysis, the positional relationship
between CNVs and eQTLs is examined here.

A total of 3295 eQTLs have been mapped to the mouse genome. The eQTLs are grouped according to
their log p values, and within each group the number of eQTLs in CNVSs versus the number outside
CNVSs is recorded. The contingency table is given in table 4.9.

log p eQTLs in CNVSs eQTLs outside CNVSs Totals
0-49 756 1971 2727
50-99 133 240 373
100-149 45 86 131
> 150 28 36 64
Totals 962 2333 3295

Table 4.9: Contingency table of eQTLs observed in CNVSs and eQTLs observed outside CNVSs.
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Using Pearson’s χ-square test, with 3 degrees of freedom, the null hypothesis that the eQTLs are not
positionally related to CNVs is tested. A χ-squared statistic of 18.6371 is obtained, giving a a p-value
of 0.0003249. Therefore there is strong evidence to reject the null hypothesis in favour of the alternative
that eQTLs are positionally related to CNVs.
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Chapter 5

Future Work

To bring this section of the project to completion three data sets must be incorporated into the analysis
of the putative CNVs located by EF and SW-ARRAY. The data sets are:

• A high density array-based SNP sequencing data set, produced by Perlegen (http://www.perlegen.com),
for fifteen mouse strains, five of which are in the ROMA experiment set of eight. The arrays cover
the non-repetitive fraction of the C57BL/6J genome as a series of 25-mers (each assayed base posi-
tion has a 25-mer centered on it). First, the genome of each strain was amplified using long-range
PCR in 10kb sections. These were then hybridised to the arrays, and allele-calling software was
used to call the SNPs. Identifying runs of PCR sequencing failures in this data will enable the
location of putative deletions relative to C57BL/6J which are not visible in the ROMA data.

• An HMM analysis of the genotyping errors in the eight inbred mouse strains, kindly conducted
by Gil McVean in the Department of Statistics, University of Oxford. Briefly, an HMM was used
to infer strain mosaic structure for the eight mouse strains from the HS mice (for which the eight
inbred strains are the founding strains) (Mott et al., 2000). Next, places on the genome where the
genotype observed was different to that predicted by the inferred strain structure were identified
(allowing for errors in the inference of the strain structure). All such ‘errors’ were then pulled
together across mice, and SNPs where there were a large number of errors were identified. Such
errors may be due to CNVs and might be useful for corroboration of the putative CNVs located
by EF and SW-ARRAY.

• The mouse CNV set published by Graubert et al. (2007). This work represents the most recent,
and only other very high throughput, analysis of CNV in the mouse genome. The experiments use
C57BL/6J as the reference strain, and five of the seven test strains from the ROMA experiment are
analysed in the paper, so it will be possible to make a direct comparison. In addition, since CBS
was used in the aCGH analysis carried out in Graubert et al. (2007), it will be useful to use CBS to
analyse the ROMA data, and to compare the results to those published in the paper. It will also be
informative to analyse their raw data using EF and SW-ARRAY and to compare the highlighted
CNVs to the published results. Finally, it will be useful to integrate the data from Graubert et al.
(2007) with the ROMA data set. This will produce a mouse aCGH data set with higher density
than any other mouse aCGH data currently available. The data will be analysed for CNVs, and the
results compared to those obtained from the two data sets individually. Importantly, the technique
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could potentially be generalised to a wide variety of high throughput data sets.

Clearly, it will also be necessary to assess the putative CNVs using the results of verification experiments
currently being conducted by Binnaz Yalcin at the Wellcome Trust Centre for Human Genetics (see
sections 4.2, 4.2.1 and 4.3, for discussions of how the experimental data will be used). The verification
techniques used for putative CNVs depend on their size and whether they are gain or loss CNVs, and in-
clude PCR, fluorescent in situ hybridisation (FISH) and multiplex ligation-dependent probe amplification
(MLPA Schouten et al. (2002)).

As a corollary to this work it will be constructive to review the nature of the data produced by the
very high throughput aCGH methods now emerging. In particular it will be helpful to compare the
distribution of the aCGH data from Graubert et al. (2007) to that of the ROMA data analysed here. Of
primary interest is a comparison of the tails of the distributions, which are extremely imbalanced in the
ROMA data. A review, based on the literature review given in chapter 2, of the applicability of current
aCGH analytical methods to such high throughput methods, will also be informative.

In the next phase of the project modifications and extensions of the methods described in this report
will be explored:

• SW-ARRAY will be extended to support the integration of SNP data. Referring to section 2.8,
it is possible to solve eq.(2.41), by numerical analysis, separately for ROMA data from reference
SNP matched and non-matched regions. Furthermore it is possible to choose a parameter τ , again
by numerical analysis, to subtract from the ROMA data in the SNP matched regions, such that
the solution to eq.(2.41) is the same for this adjusted ROMA data as it is for the ROMA data
in the SNP non-matched regions. Then, with reference to eq.(2.42), the mean maximal segment
score, S̄(n), will have very similar distributions in ROMA data from both types of region (except
for the factor K, which is harder to account for). Thus, after adjusting the ROMA data in the
SNP matched regions by τ , it will be possible to use the SW-ARRAY algorithm across the whole
data set, as described in section 2.8.4.

• EF will be modified to incorporate the SNP data in a different way, such that its power to detect
CNVs will increase by combining data across mouse strains. The SNP genotypes will be used to
infer phylogenetic trees of the mouse strains which, due to the mosaic nature of the mouse strains,
change along the length of the genome. For each phylogeny the mouse strains will be grouped
according to their similarity to C57BL/6J. Then the average signal across all strains that are
different to C57BL/6J will be calculated, and thresholds set accordingly, before searching for runs
of average log2 ratios that exceed the thresholds. There are many open questions in this process.
Two hard ones are: How should the phylogenetic trees be inferred?; and how should the trees be
divided into C57BL/6J similar/dissimilar strains?

In the field of bioinformatics high throughput sequence analysis problems are commonplace, and often
involve data which are from a continuous but otherwise uncharacterised distribution, have a high variance
and, importantly, may have related data or knowledge that can explain some of the variance in the signal.
Therefore it is desirable to complete this project with a Bayesian nonparametric approach to segmentation
of high density, high variance sequence data. A nonparametric method would be advantageous because
it would not require a functional form for the distribution of the data. Furthermore, it would render
the method readily generalisable to any sequence data, even if the underlying distribution of the data
was known. The Bayesian aspect of the approach would enable the coherent introduction of external
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data sets. So for example, in the case of the ROMA data set, a prior probability of CNV in a particular
mouse strain could be derived from the SNP based phylogenies discussed above. Alternatively the prior
probability could be based on the evidence for CNV in other test strains. Finally, such an approach would
provide a coherent method for placing probabilities on detected events, so in the case of the ROMA data
it would provide posterior probabilities for detected CNVs.
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