## NimbleGen Data Formats

NimbleGen Systems, Inc.

November 6, 2006

# Contents

| 1  | Introduction                                                                                                                                      | 3                            |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|
| 2  | General Information About Array Designs   2.1 Coordinate Information   2.2 Containers   2.3 Probe Density   2.4 Link Placement   2.5 Probe Layout | <b>4</b><br>4<br>4<br>5<br>5 |  |  |
| 3  | Interval Statistics                                                                                                                               | 7                            |  |  |
| 4  | Array Layout File (NAL)                                                                                                                           | 8                            |  |  |
| 5  | Design File (NDF)                                                                                                                                 | 9                            |  |  |
| 6  | Gene Description File (NGD)                                                                                                                       |                              |  |  |
| 7  | 7 Positions File (POS)                                                                                                                            |                              |  |  |
| 8  | 3 GFF Report (GFF) 1                                                                                                                              |                              |  |  |
| 9  | Feature Report (FTR)                                                                                                                              | 18                           |  |  |
| 10 | PAIR Report (PAIR)                                                                                                                                | 20                           |  |  |
| 11 | 1 NimbleGen XYS Report (XYS) 2                                                                                                                    |                              |  |  |
| 12 | 2 Gene Expression Values (CALLS) 2                                                                                                                |                              |  |  |
| 13 | .3 Normalized Gene Expression Values (CALLS)                                                                                                      |                              |  |  |

# Introduction

This document gives a description of NimbleGen's various data formats, as well as explanation of array layouts and feature densities. Not all files are relevent to all applications. Most of NimbleGen's data files are tab-delimited text files, with the exceptions noted below. Generally, the columns described for each file will be found in the same order as detailed below, but column order should not be assumed. All of the text data files have one or more header lines and the necessary column information should be parsed out of the header line(s).

# General Information About Array Designs

The flexibility of NimbleGen's array synthesis platform means that there are wide variety of designs that can be created. The following sections provide a brief introduction to NimbleGen array designs, and concepts and nomenclature that are used throughout the rest of the document.

#### 2.1 Coordinate Information

NimbleGen arrays are synthesized using maskless array technology. A digital light projector  $(DLP^1)$  is used to selectively deprotect features where new DNA bases are to be added. The DLP is 768 column x 1204 rows (XVGA). When specifying coordinates, arrays are viewed in portrait, with (1,1) = upper left, (768,1) = upper right, (1,1024) = lower left, (768,1024) = lower right. These are the X and Y coordinates that used in the remainder of the document. The design file also has COL\_NUM and ROW\_NUM information. These are container-based coordinates, relative to the upper left corner of the container.

#### 2.2 Containers

NimbleGen's array layout application, ArrayScribe, works much the same way as a paint program. Containers, drawn as rectangles or squares on a 'canvas', are positioned by the researcher and then filled by dragging and dropping probe sets on to the containers. Container can be completely overlapping, non-overlapping, partially overlapping, completely contained within one another, etc. They can be 1 x 1 features or 768 x 1024 features. Each container is named, though they do not have to be uniquely named. For example, you could scatter four small containers around the array and label each of them 'CONTROL', or you could label each container separately: 'CONTROL1', 'CONTROL2', etc. Besides name, position, height, width, and color, each container has several other special properties that can be set. Those include probe density, link placement, and probe layout.

#### 2.3 Probe Density

Probe density deals with how many individual DLP mirrors or elements are used to synthesize a probe, and how those DLP mirrors are arranged. A DLP mirror is 16 microns square, with a 1 micron spacing, and each one creates a feature on the array of the same size (i.e. there is no magnification that takes

<sup>&</sup>lt;sup>1</sup>http://www.dlp.com/

place). By using multiple mirrors, however, larger features can be created called meta-features. If four mirrors instead of one are coordinated together, a meta-feature 33 by 33 microns in size is created (16 + 1 + 16). See Figure 2.1 E for examples of meta-features, which are outlined with thicker black lines. The individual features comprising a meta-features are tied together using a FEATURE\_ID in the design file. NimbleScan, NimbleGen's image quantification and data analysis tool, will automatically recognize the presence of meta-features and quantify them as a single feature, rather than quantifying each individual feature separately.

In addition to feature size (how many DLP mirrors are used), the pattern in which they are arranged is important. There are three common feature densities used for NimbleGen arrays: 1:2 (1 in 2), 1:4 (1 in 4) and 4:9 (4 in 9). The first number is the number of occupied features, the second number is the total number of features for the feature cell. For a 1:2 design, there is one blank feature for every occupied feature (see Figure 2.1 A). For a 1:4 probe density, for every 4 features, one is used and there are 3 blank features surrounding it (see Figure 2.1 C). Finally, for a 4:9 feature density, there are 4 occupied features and 5 blank features.

#### 2.4 Link Placement

Expression designs sometimes have mismatch probes - probes that differ from the parent probe by one or more base pair changes at different positions in the probe. ArrayScribe has two options when using mismatch probes, horizontal and vertical. When the horizonal option is selected, the mismatch probe is placed to the right of the perfect match probe. When the vertical option is selected, the mismatch probe is placed directly beneath the perfect match probe. Generally, the vertical option is the default for expression designs with mismatch probes.

#### 2.5 Probe Layout

Probe layout describes how the probes are added when they are dropped on a container. There are four choices: row/column, horizontal, vertical, and random. The row/column option is only used when the probe set(s) contain COL\_NUM and ROW\_NUM information. It precisely places probes and is generally used for the placement of control probes in defined positions. The horizontal option instructs ArrayScribe to position the probes in horizontal strips, rastering left to right across the container, using the same order as they are found in the probe file. The vertical option does the same, but goes from top to bottom. The random option is the most commonly used option. Probes are placed randomly within the container, though mismatch probes are kept adjacent to their perfect match partners using the link placement specification.

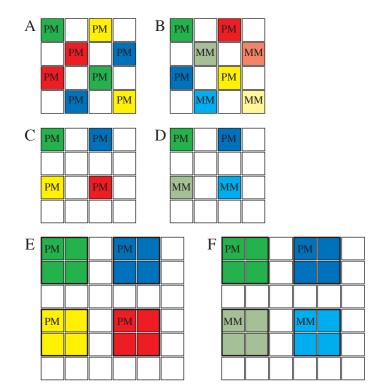



Figure 2.1: (A) 1:2 probe density with no mismatch features. (B) 1:2 probe density with vertical mismatches. (C) 1:4 probe density with no mismatch features. (D) 1:4 probe density with vertical mismatches. (E) 4:9 probe density with no mismatch features. (F) 4:9 probe density with vertical mismatches.

# **Interval Statistics**

For genomic tiling designs a report may be generated that describes some of the characteristics of the design, such as probe numbers, coverage, and interval spacing or probes. This report, an interval statistics report, is often helpful in comparing options for designs, and may be supplied by the NimbleGen array design staff to explain differences between design options, or to summarize a completed design for customer approval. The columns in the report are described below:

| Field Name      | Description                                      |
|-----------------|--------------------------------------------------|
| SEQ_ID          | NimbleGen identifier or sequence identifier,     |
|                 | often in the form chrN:start-stop.               |
| PROBES          | number of probes representing the SEQ_ID.        |
| MEAN_INTERVAL   | the mean spacing from probe start to probe       |
|                 | start.                                           |
| MEDIAN_INTERVAL | the median spacing from probe start to probe     |
|                 | start.                                           |
| 1ST_QUARTILE    | 25% of the intervals are smaller than this       |
|                 | value.                                           |
| 3RD_QUARTILE    | 75% of the intervals are smaller than this       |
|                 | value.                                           |
| MIN_INTERVAL    | smallest probe start to probe start spacing in   |
|                 | the probe set or design.                         |
| MAX_INTERVAL    | largest probe start to probe start spacing in    |
|                 | the probe set or design. Large intervals are     |
|                 | often caused by large blocks of N's represent-   |
|                 | ing telomeres, centromeres or other unfinished   |
|                 | sequences.                                       |
| COVERAGE        | the number of bases in the region that are       |
|                 | covered by a probe. Coverage calculation only    |
|                 | makes sense when the interval spacing is small   |
|                 | enough that probes begin to overlap (less than   |
|                 | 75 bp or so). Otherwise it just reflects the sum |
|                 | length of the probes in the design.              |

# Array Layout File (NAL)

The NimbleGen Array Layout File (NAL) is the save file format for ArrayScribe, NimbleGen System's array layout application. ArrayScribe allows the user to import probe sets and arrange them into a completed array design. The NAL file stores probe sets and probe layouts. The NAL is a binary file, storing the probe sets in compressed format for more compact storage. Using ArrayScribe, a design file (section 5) and mask sets for array synthesis are produced.

# Design File (NDF)

A design file contains the complete information necessary to synthesis an array.

A design file contains 17 columns. For a standard 1:4 design, the NDF file will contain approximately 196000 rows. For a standard 1:2 design, the NDF file will contain approximately 393000 rows. The information is tab delimited with a single header line containing the field names. The columns can be in any order.

| Field Name             | Description                        | Requirement                         |
|------------------------|------------------------------------|-------------------------------------|
| PROBE_DESIGN_ID        | This a unique, composite key con-  | Supplied by database                |
|                        | sisting of the DESIGN_ID, Y, and   |                                     |
|                        | X.                                 |                                     |
| DESIGN_ID              | This is the NimbleGen identifier   | Supplied by NimbleGen               |
|                        | for the design.                    |                                     |
| CONTAINER              | NimbleGen arrays are divided into  | Supplied by ArrayScribe. Limited    |
|                        | containers. One method of us-      | to 50 characters                    |
|                        | ing containers is to divide the    |                                     |
|                        | array into quadrants with ref-     |                                     |
|                        | erence marks. Will be used         |                                     |
|                        | as 'GENE_EXPR_OPTION' for          |                                     |
|                        | PAIR and CALLS reports.            |                                     |
| DESIGN_NOTE            | A comment field suitable for plac- | Optional - can be used if you       |
|                        | ing information necessary for data | want to analyze data using criteria |
|                        | analysis, for instance if you want | other than CONTAINER (rarely        |
|                        | to analyze sets of probes and/or   | necessary). Limited to 100 char-    |
|                        | genes together that don't separate | acters.                             |
|                        | out using SEQ_ID, PROBE_ID,        |                                     |
|                        | SELECTION_CRITERIA, CON-           |                                     |
|                        | TAINER, or other information.      |                                     |
| Continued on next page |                                    |                                     |

| Field Name             | Description                          | Requirement                                                             |
|------------------------|--------------------------------------|-------------------------------------------------------------------------|
| SELECTION_CRITERIA     | Generally contains information       | Optional - necessary only if you                                        |
|                        | about how a probe was selected.      | want to evaluate probe sets at dif-                                     |
|                        | For rank selection, contains rank,   | ferent levels of selection criteria.                                    |
|                        | uniqueness, and frequency. For       | Limited to 100 characters.                                              |
|                        | older designs, will contain a crite- |                                                                         |
|                        | ria category.                        |                                                                         |
| SEQ_ID                 | The NimbleGen sequence identi-       | Required - must be unique for each                                      |
|                        | fier. Used to group the probe pairs  | sequence/region of interest. Lim-                                       |
|                        | together for determing gene ex-      | ited to 50 characters. For ex-                                          |
|                        | pression summary values.             | pression designs, an NGS SEQ_ID                                         |
|                        |                                      | is usually 17 character string that                                     |
|                        |                                      | looks like HSAP0001S00001834.                                           |
|                        |                                      | The first four letters (HSAP) are                                       |
|                        |                                      | the species code. The next four                                         |
|                        |                                      | characters (0001) are the sequence<br>build number. The 'S' is the des- |
|                        |                                      | ignator for sequence (so there's no                                     |
|                        |                                      | confusion with the similar looking                                      |
|                        |                                      | PROBE_IDs) The last eight dig-                                          |
|                        |                                      | its are the unique sequence num-                                        |
|                        |                                      | ber within the sequence build                                           |
| POSITION               | Position of the                      | Optional - useful for data analysis.                                    |
|                        | PROBE_SEQUENCE in the                | Integer                                                                 |
|                        | sequence/region of interest,         |                                                                         |
|                        | starting from the left/5' end.       |                                                                         |
| PROBE_SEQUENCE         | The DNA sequence synthesized on      | Required. Limited to 200 charac-                                        |
|                        | the array. Always shown 5' to 3'.    | ters                                                                    |
| MISMATCH               | The mismatch index of the            | Required for expression arrays. 0                                       |
|                        | PROBE_SEQUENCE. This will            | for perfect match, other positive                                       |
|                        | be 0 (for the perfect match probe)   | integer for mismatch. Generated                                         |
|                        | , 1 for the first mismatch, 2 for    | by ArrayScribe. May be over-                                            |
|                        | the next, etc.                       | ridden by users if MISMATCH in                                          |
|                        |                                      | probe file $\geq 10,000$ .                                              |
| MATCH_INDEX            | Integer number that ties probe       | Required for expression arrays                                          |
|                        | pairs together. Using the com-       | with mismatches. Must be unique                                         |
|                        | bination of MATCH_INDEX and          | for each probe pair. Inte-                                              |
|                        | MISMATCH you can retrieve and        | ger. Generated by ArrayScribe.                                          |
|                        | distinguish the members of the       | May be over-ridden by users if                                          |
|                        | probe pair.                          | MATCH_INDEX in probe file $\geq =$                                      |
|                        |                                      | 1,000,000                                                               |
| Continued on next page |                                      |                                                                         |

Table 5.1 – continued from previous page

| Field Name  | Description                         | Requirement                          |
|-------------|-------------------------------------|--------------------------------------|
| FEATURE_ID  | Unsigned Integer that uniquely      | Integer. Unique within a design      |
|             | identifies a feature. A feature is  | for each meta-feature. Generated     |
|             | the set of probes on the array that | by ArrayScribe.                      |
|             | are to be considered as one entity. |                                      |
|             | A 4:9 array will have 4 probes with |                                      |
|             | the same FEATURE_ID                 |                                      |
| COL_NUM     | The X or column coordinate of the   | Integer. Will range from 1 to 768.   |
|             | feature in the CONTAINER.           | May be supplied by user if speci-    |
|             |                                     | fying coordinate position.           |
| ROW_NUM     | The Y or row coordinate of the      | Integer. Will range from 1 to 1024.  |
|             | feature in the CONTAINER.           | May be supplied by user if speci-    |
|             |                                     | fying coordinate position.           |
| X           | The X or column coordinate of the   | Integer. Will range from 1 to 768.   |
|             | feature in the design.              |                                      |
| Y           | The Y or row coordinate of the      | Integer. Will range from 1 to 1024.  |
|             | feature in the design.              |                                      |
| PROBE_CLASS | Designates probe purpose.           | For internal use. Generally 'exper-  |
|             |                                     | imental' or 'control' or 'fiducial'. |
|             |                                     | 'fiducial' is mandatory for those    |
|             |                                     | features used for extraction. Lim-   |
|             |                                     | ited to 20 characters.               |
| PROBE_ID    | The NimbleGen probe identifier.     | Limited to 50 characters. For ex-    |
|             | Used to identify a probe sequence   | pression designs, a PROBE_ID is a    |
|             | within a design.                    | 17 character string that looks like  |
|             |                                     | HSAP00P0001724033. The first         |
|             |                                     | four letters (HSAP) are the species  |
|             |                                     | code. The 'P' is the designator      |
|             |                                     | for probe (so there's no confusion   |
|             |                                     | with the similar looking SEQ_IDs)    |
|             |                                     | The last ten digits are the probe    |
|             |                                     | number.                              |

Table 5.1 – continued from previous page

# Gene Description File (NGD)

A gene description file (.ngd) is a tab-delimited file with a header line that contains just 2 columns. The first column is the NimbleGen sequence identifier assigned to the target sequence when loaded into the content database. Depending on the sequence source and type of design, it might be a GenBank accession number, a chromosome and location string (i.e. chrN:start-end), or a NimbleGen identifier as described above for the design file. The second column is a pipe-delimited (" | ") string of information that is known about the sequence. Because of the wide variety of sequence sources used for custom and catalog designs, there is no uniform specification for the information contained in this second column. It might be a single piece of information, such as a gene name or description, or it may be a multi-value list containing chromosome position, strand, exon number and positions, etc. The first value of the header line of the NGD file is always SEQ\_ID. The second value is a pipe-delimited string that contains the column names of the pipe-delimited values below. Loading the NGD file in an application like Microsoft Excel and splitting the second column on " |" will produce a multi-column file with the appropriate column headings. The header for a catalog expression design may look like the following:

SEQ\_ID [tab] SEQ\_UNIQUE | SPECIES\_CODE | BUILD | FEAT\_TYPE | GENE\_NAME | ACCES-SION | GI | FUNCTION | CHROMOSOME | MAPLOC | DESCRIPTION | COMMENTS | DATE\_ENTERED | SOURCE\_DB [eol]

Generally the column headings have informative names that should be simple to interpret.

# Positions File (POS)

The positions file (.pos) is used for applications like comparative genomic hybridization (CGH), expression tiling, or ChIP-chip, where it is essential to know the genomic position of the probes used in the experiment. The .pos file contains the mapping of each PROBE\_ID to its position in the genome. Positions are keyed on SEQ\_ID plus PROBE\_ID, so the PROBE\_IDs do not have to be unique, though that is generally a good idea. Multiple versions of a .pos file may exist for a design, representing different genomic builds, or designating different ways of displaying the data in SignalMap, NimbleGen's visualization tool. For example, if a design encompasses 20 different genomic regions, the researcher may want to see the data displayed at the actual genomic coordinates, or may want the data for each region displayed in a separate panel. POS files have 4 required columns and a number of optional columns. They are tab-delimited files with a single header line. The columns may be in any order.

| Field Name | Description                         | Notes                             |
|------------|-------------------------------------|-----------------------------------|
| PROBE_ID   | The NimbleGen probe identifier.     | Required. Generally all upper-    |
|            | For genomic applications this is    | case, with zero padding for chro- |
|            | most often in the form of [chro-    | mosome name. Limited to 50        |
|            | mosome]00P[position]. For ex-       | characters.                       |
|            | ample, CHR0100P000053157 or         |                                   |
|            | CHRY00P057369061. The "00P"         |                                   |
|            | string indicates the probe was gen- |                                   |
|            | erated from the forward strand. A   |                                   |
|            | "99P" string indicates the probe    |                                   |
|            | is the reverse complement of the    |                                   |
|            | probe generated from that postion   |                                   |
|            | on the forward strand.              |                                   |
|            | Continued on next pa                | ge                                |

\_\_\_\_\_

| Field Name | Description                         | Notes                            |
|------------|-------------------------------------|----------------------------------|
| SEQ_ID     | The NimbleGen sequence iden-        | Required. Generally all upper    |
|            | tifier. For genomic applications    | case, with no zero padding for   |
|            | this is normally either the chro-   | chromosome name. Limited to 50   |
|            | mosome name (CHR1,CHRY)             | characters.                      |
|            | or the chromosome name with         |                                  |
|            | a position qualifier in the for-    |                                  |
|            | mat chrN:start-stop (CHR1:1-        |                                  |
|            | 10000000, CHRY:2300000-             |                                  |
|            | 7800000).                           |                                  |
| CHROMOSOME | The chromosome or parent se-        | Required. Generally lower case,  |
|            | quence that the probe is located    | with no zero padding. Limited to |
|            | on. May be different from the       | 50 characters.                   |
|            | chromosome indicated by SEQ_ID      |                                  |
|            | and/or PROBE_ID because file        |                                  |
|            | was generated against different     |                                  |
|            | genome build, or different set of   |                                  |
|            | target sequences.                   |                                  |
| POSITION   | Position of the                     | Required. Integer                |
|            | PROBE_SEQUENCE in the               |                                  |
|            | sequence/region of interest,        |                                  |
|            | starting from the left/5' end.      |                                  |
| COUNT      | The uniqueness count of the probe   | Optional column. Integer         |
|            | in the target genome. Different     |                                  |
|            | applications may have different re- |                                  |
|            | quirements for uniqueness. For de-  |                                  |
|            | signs where all probes are equal    |                                  |
|            | length, the COUNT will be the       |                                  |
|            | number of matches of that length    |                                  |
|            | in the genome. For designs with     |                                  |
|            | variable length probes, uniqueness  |                                  |
|            | is normally measured as the num-    |                                  |
|            | ber of matches equal to the size of |                                  |
|            | the shortest allowed probe on the   |                                  |
|            | design. May default to 1 for some   |                                  |
|            | applications.                       |                                  |
| LENGTH     | Length of the probe in base pairs.  | Optional column. Integer         |
| GC         | The percent GC of the probe se-     | Optional column. Float           |
|            | quence.                             |                                  |

# GFF Report (GFF)

General Feature Format (GFF) is an exchange format for genomic based data. NimbleGen products that contain genomic coordinates and information supply data in GFF format for viewing in SignalMap, NimbleGen's visualization tool, and in other GFF viewers. GFF files supplied by NimbleGen conform to version 2 of the GFF specification <sup>1</sup>. Each line of a GFF file is tab-delimited, with the following format: <seqname> <source> <feature> <start> <end> <score> <strand> <frame> [attributes] [com-

ments]

| Field Name | Description                           | Notes                             |  |
|------------|---------------------------------------|-----------------------------------|--|
| seqname    | The name of the sequence. Hav-        | For NimbleGen data this will nor- |  |
|            | ing an explicit sequence name al-     | mally be the chromosome name.     |  |
|            | lows a feature file to be prepared    | This is the panel name in Sig-    |  |
|            | for a data set of multiple se-        | nalMap.                           |  |
|            | quences. Normally the sequame         |                                   |  |
|            | will be the identifier of the se-     |                                   |  |
|            | quence in an accompanying fasta       |                                   |  |
|            | format file. An alternative is that   |                                   |  |
|            | jseqname; is the identifier for a se- |                                   |  |
|            | quence in a public database, such     |                                   |  |
|            | as an EMBL/Genbank/DDBJ ac-           |                                   |  |
|            | cession number. Which is the case,    |                                   |  |
|            | and which file or database to use,    |                                   |  |
|            | should be explained in accompa-       |                                   |  |
|            | nying information.                    |                                   |  |
| source     | The source of this feature. This      | Will generally be NimbleGen pro-  |  |
|            | field will normally be used to indi-  | gram that produced the data, or   |  |
|            | cate the program making the pre-      | the database name.                |  |
|            | diction, or if it comes from public   |                                   |  |
|            | database annotation, or is experi-    |                                   |  |
|            | mentally verified, etc.               |                                   |  |
|            | Continued on next page                |                                   |  |

<sup>&</sup>lt;sup>1</sup>http://www.sanger.ac.uk/Software/formats/GFF/GFF\_Spec.shtml

| Field Name             | Description                                                                                      | Notes                                                    |
|------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| feature                | The feature type name.                                                                           | For NimbleGen data, this will of-                        |
|                        |                                                                                                  | ten be the sample name or some                           |
|                        |                                                                                                  | description of the values. This will                     |
|                        |                                                                                                  | be the track name in SignalMap.                          |
| start, end             | Integers. <b>start</b> must be less than<br>or equal to <b>end</b> . Sequence num-               | These are the genomic coordinates of the feature.        |
|                        | bering starts at 1, so these num-                                                                |                                                          |
|                        | bers should be between 1 and the                                                                 |                                                          |
|                        | length of the relevant sequence, in-                                                             |                                                          |
|                        | clusive. Version 2 condones values                                                               |                                                          |
|                        | of <b>start</b> and <b>end</b> that extend out-                                                  |                                                          |
|                        | side the reference sequence. This                                                                |                                                          |
|                        | is often more natural when dump-                                                                 |                                                          |
|                        | ing from acedb, rather than clip-                                                                |                                                          |
|                        | ping. It means that some software                                                                |                                                          |
|                        | using the files may need to clip for                                                             |                                                          |
|                        | itself.                                                                                          |                                                          |
| score                  | A floating point value. When                                                                     | This score will have various mean-                       |
|                        | there is no score (i.e. for a sensor                                                             | ings, depending on the NimbleGen                         |
|                        | that just records the possible pres-                                                             | product. For CGH and ChIP-chip,                          |
|                        | ence of a signal, as for the EMBL                                                                | it might be log2 values for some                         |
|                        | features above) you should use '.'.                                                              | tracks. It might be probabilities                        |
|                        |                                                                                                  | or false discovery rates for other                       |
|                        |                                                                                                  | tracks. Use the 'feature' identifier                     |
|                        |                                                                                                  | to provide some indication of the                        |
| atrond                 | One of $(+, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$ | meaning of the score.                                    |
| strand                 | One of '+', '-' or '.'. '.' should<br>be used when strand is not rele-                           | Generally only relevant for gene annotation information. |
|                        | vant, e.g. for dinucleotide repeats.                                                             |                                                          |
|                        | Version 2 change: This field is left                                                             |                                                          |
|                        | empty '.' for RNA and protein fea-                                                               |                                                          |
|                        | tures.                                                                                           |                                                          |
|                        | Continued on next p                                                                              | nage                                                     |
| Continued on next page |                                                                                                  |                                                          |

Table 8.1 – continued from previous page

| Field Name | Description                                                           | Notes                             |
|------------|-----------------------------------------------------------------------|-----------------------------------|
| frame      | One of '0', '1', '2' or '.'. '0' in-                                  | Generally only relevant for gene  |
|            | dicates that the specified region is                                  | annotation information.           |
|            | in frame, i.e. that its first base                                    |                                   |
|            | corresponds to the first base of a                                    |                                   |
|            | codon. '1' indicates that there is                                    |                                   |
|            | one extra base, i.e. that the sec-                                    |                                   |
|            | ond base of the region corresponds                                    |                                   |
|            | to the first base of a codon, and '2'                                 |                                   |
|            | means that the third base of the                                      |                                   |
|            | region is the first base of a codon.                                  |                                   |
|            | If the strand is '-', then the first                                  |                                   |
|            | base of the region is value of <b>end</b> ,                           |                                   |
|            | because the corresponding coding                                      |                                   |
|            | region will run from end to start                                     |                                   |
|            | on the reverse strand. As with                                        |                                   |
|            | strand, if the frame is not rele-                                     |                                   |
|            | vant then set <b>frame</b> to '.'. Version                            |                                   |
|            | 2 change: This field is left empty                                    |                                   |
|            | '.' for RNA and protein features.                                     |                                   |
| attribute  | From version 2 onwards, the at-                                       | NimbleGen uses the attribute      |
|            | tribute field must have an tag                                        | field to specify URLs to external |
|            | value structure following the syn-                                    | databases and to specify feature  |
|            | tax used within objects in a .ace                                     | colors.                           |
|            | file, flattened onto one line by                                      |                                   |
|            | semicolon separators. Tags must                                       |                                   |
|            | be standard identifiers ([A-Za-                                       |                                   |
|            | $z][A-Za-z0-9_]^*)$ . Free text val-                                  |                                   |
|            | ues must be quoted with double                                        |                                   |
|            | quotes. Note: all non-printing                                        |                                   |
|            | characters in such free text value                                    |                                   |
|            | strings (e.g. newlines, tabs, con-                                    |                                   |
|            | trol characters, etc) must be ex-                                     |                                   |
|            | plicitly represented by their C                                       |                                   |
|            | (UNIX) style backslash-escaped                                        |                                   |
|            | representation (e.g. newlines as $(\lambda r^2) + \lambda r$ in ACEDB |                                   |
|            | (n', tabs as (t')). As in ACEDB,                                      |                                   |
|            | multiple values can follow a spe-                                     |                                   |
|            | cific tag.                                                            |                                   |

Table 8.1 - continued from previous page

# Feature Report (FTR)

The Feature Report provides the signal intensity for every non-blank feature on the array as an average of the pixel intensities comprising the each feature. Meta-features are not aggregated in this report - each individual feature which is part of a meta-feature is reported separately.

The information in a feature report is tab delimited with a two header lines. The first header line contains information in key=value pairs regarding the originating image, design, and grid placement parameters. The second header line contains the column names. A feature report contains 11 columns. The columns are:

| Field Name             | Description                         | Notes                               |
|------------------------|-------------------------------------|-------------------------------------|
| X                      | The X or column coordinate of the   | Integer. Will range from 1 to 768.  |
|                        | feature in the design.              |                                     |
| Y                      | The Y or row coordinate of the      | Integer. Will range from 1 to 1024. |
|                        | feature in the design.              |                                     |
| SEQ_ID                 | The NimbleGen sequence identi-      | For expression designs, an NGS      |
|                        | fier. Used to group the probe pairs | SEQ_ID is usually 17 char-          |
|                        | together for determing gene ex-     | acter string that looks like        |
|                        | pression summary values.            | HSAP0001S00001834. The first        |
|                        |                                     | four letters (HSAP) are the         |
|                        |                                     | species code. The next four char-   |
|                        |                                     | acters (0001) are the sequence      |
|                        |                                     | build number. The 'S' is the des-   |
|                        |                                     | ignator for sequence (so there's no |
|                        |                                     | confusion with the similar looking  |
|                        |                                     | PROBE_IDs) The last eight digits    |
|                        |                                     | are the unique sequence number      |
|                        |                                     | within the sequence build           |
| Continued on next page |                                     |                                     |

| Field Name   | Description                         | Notes                               |
|--------------|-------------------------------------|-------------------------------------|
| PROBE_ID     | The NimbleGen probe identifier.     | For expression designs, a           |
|              | Used to identify a probe sequence   | PROBE_ID is a 17 char-              |
|              | within a design.                    | acter string that looks like        |
|              |                                     | HSAP00P0001724033. The first        |
|              |                                     | four letters (HSAP) are the         |
|              |                                     | species code. The 'P' is the        |
|              |                                     | designator for probe (so there's no |
|              |                                     | confusion with the similar looking  |
|              |                                     | SEQ_IDs) The last ten digits are    |
|              |                                     | the probe number.                   |
| X_PIXEL      | X coordinate of the upper left cor- |                                     |
|              | ner of the feature in image coordi- |                                     |
|              | nates                               |                                     |
| Y_PIXEL      | Y coordinate of the upper left cor- |                                     |
|              | ner of the feature in image coordi- |                                     |
|              | nates                               |                                     |
| HEIGHT       | Height of the feature in pixels     | Will depend on the feature size     |
|              |                                     | and the scanner resolution.         |
| WIDTH        | Width of the feature in pixels      | Will depend on the feature size     |
|              |                                     | and the scanner resolution.         |
| FGD_PIX      | Abbreviation for foreground pix-    |                                     |
|              | els. Total number of pixels in the  |                                     |
|              | feature.                            |                                     |
| SIGNAL_MEAN  | Mean fluorescence intensity of the  | Will range from 0 to 65535.         |
|              | pixels which make up the feature.   |                                     |
| SIGNAL_STDEV | Standard deviation of the fluores-  |                                     |
|              | cence intensity of the pixels which |                                     |
|              | make up the feature.                |                                     |

Table 9.1 - continued from previous page

# PAIR Report (PAIR)

The PAIR report is the raw data file format for a number of NimbleGen products. Meta-features are pre-aggregated in a PAIR report. For designs without meta-features, a PAIR and FTR report will contain essentially the same information.

A PAIR report contains 11 columns. The information is tab delimited with a two header lines. The first header line contains information in key=value pairs regarding the originating image, design, and grid placement parameters. The second header line contains the column names. The columns can be in any order. May also be named \*\_pair.txt.

| Field Name             | Description                           | Notes                               |
|------------------------|---------------------------------------|-------------------------------------|
| IMAGE_ID               | The name of the image the data        | For NimbleGen data sets, this wil   |
|                        | was extracted from, minus the .tif    | be the array identifier plus any    |
|                        | extension                             | additional information, like wave-  |
|                        |                                       | length used to scan the array, or   |
|                        |                                       | photomultiplier tube setting. The   |
|                        |                                       | array ID will be all of the charac- |
|                        |                                       | ters before the first underscore.   |
| GENE_EXPR_OPTION       | The CONTAINER name from the           | The default analysis is nor-        |
|                        | design file, if analysis was done 'by | mally 'by container' . CON-         |
|                        | container' or WHOLE_ARRAY if          | TAINER names are generally          |
|                        | all replicate probe sets were com-    | name FORWARD/REVERSE,               |
|                        | bined into a single set.              | BLOCK1/BLOCK2/etc. or other         |
|                        |                                       | similar conventions.                |
| Continued on next page |                                       |                                     |

| Field Name | Description                                                    | Notes                                |
|------------|----------------------------------------------------------------|--------------------------------------|
| SEQ_ID     | The NimbleGen sequence identi-                                 | Required - must be unique for each   |
|            | fier. Used to group the probe pairs                            | sequence/region of interest. Lim-    |
|            | together for determing gene ex-                                | ited to 50 characters For expres-    |
|            | pression summary values.                                       | sion designs, an NGS SEQ_ID is       |
|            |                                                                | usually 17 character string that     |
|            |                                                                | looks like HSAP0001S00001834.        |
|            |                                                                | The first four letters (HSAP) are    |
|            |                                                                | the species code. The next four      |
|            |                                                                | characters $(0001)$ are the sequence |
|            |                                                                | build number. The 'S' is the des-    |
|            |                                                                | ignator for sequence (so there's no  |
|            |                                                                | confusion with the similar looking   |
|            |                                                                | PROBE_IDs) The last eight dig-       |
|            |                                                                | its are the unique sequence num-     |
|            |                                                                | ber within the sequence build        |
| PROBE_ID   | The NimbleGen probe identifier.                                | Limited to 50 characters. For ex-    |
|            | Used to identify a probe sequence                              | pression designs, a PROBE_ID is a    |
|            | within a design.                                               | 17 character string that looks like  |
|            |                                                                | HSAP00P0001724033. The first         |
|            |                                                                | four letters (HSAP) are the species  |
|            |                                                                | code. The 'P' is the designator      |
|            |                                                                | for probe (so there's no confusion   |
|            |                                                                | with the similar looking SEQ_IDs)    |
|            |                                                                | The last ten digits are the probe    |
| DOCITION   |                                                                | number.                              |
| POSITION   | Position of the                                                | Optional - useful for data analysis. |
|            | PROBE_SEQUENCE in the                                          | Integer                              |
|            | sequence/region of interest,<br>starting from the left/5' end. |                                      |
| X          | The X or column coordinate of the                              | Integer. Will range from 1 to 768.   |
|            | feature in the design.                                         | For aggregate features, made up of   |
|            | icaoure in one design.                                         | multiple features, this coordinate   |
|            |                                                                | is the coordinate of the upper left  |
|            |                                                                | feature. For probe pairs, the same   |
|            |                                                                | coordinates are used for both the    |
|            |                                                                | perfect match and mismatch fea-      |
|            |                                                                | ture since they are always physi-    |
|            |                                                                | cally adjacent.                      |
|            | Continued on next page                                         | J                                    |
|            |                                                                |                                      |

Table 10.1 – continued from previous page

| Field Name  | Description                        | Notes                               |
|-------------|------------------------------------|-------------------------------------|
| Y           | The Y or row coordinate of the     | Integer. Will range from 1 to 1024. |
|             | feature in the design.             | For aggregate features, made up of  |
|             |                                    | multiple features, this coordinate  |
|             |                                    | is the coordinate of the upper left |
|             |                                    | feature. For probe pairs, the same  |
|             |                                    | coordinates are used for both the   |
|             |                                    | perfect match and mismatch fea-     |
|             |                                    | ture since they are always physi-   |
|             |                                    | cally adjacent.                     |
| MATCH_INDEX | Integer number that ties probe     | Required for expression arrays      |
|             | pairs together. Using the com-     | with mismatches. Must be unique     |
|             | bination of MATCH_INDEX and        | for each probe pair of a given      |
|             | MISMATCH you can retrieve and      | SEQ_ID. Integer.                    |
|             | distinguish the members of the     |                                     |
|             | probe pair.                        |                                     |
| SEQ_URL     | When populated, URL to se-         |                                     |
|             | quence information for the         |                                     |
|             | SEQ_ID.                            |                                     |
| PM          | The perfect match signal intensity | Will range from 0 to 65536.         |
|             | for the probe pair.                |                                     |
| MM          | The mismatch signal intensity for  | Will range from 0 to 65536. Will    |
|             | the probe pair.                    | be zero for perfect match only de-  |
|             |                                    | signs.                              |

Table 10.1 – continued from previous page

# NimbleGen XYS Report (XYS)

The NimbleGen XYS file format is meant as a minimal data exchange format, containing only 4 columns of data. The individual features comprising a meta-feature are not reported separately, but are instead aggregated and a single value is reported. For every FEATURE\_ID in a design file, there is a single row in the XYS file.

The information is tab delimited with a two header lines. The first header line contains information in key=value pairs regarding the originating image, design, and grid placement parameters. The second header line contains the column names.

| Field Name | Description                        | Notes                                |
|------------|------------------------------------|--------------------------------------|
| Χ          | The X or column coordinate of the  | Will range between 1 and 768         |
|            | feature in the design.             |                                      |
| Y          | The Y or row coordinate of the     | Will range between 1 and 1024        |
|            | feature in the design.             |                                      |
| Signal     | The mean fluorescence intensity of | Will range from 0 to 65535. Is       |
|            | the pixels comprising the feature  | set to NA for NimbleGen control      |
|            |                                    | features not related to the experi-  |
|            |                                    | ment.                                |
| Count      | The number of individual features  | For 1:2 and 1:4 feature densities,   |
|            | aggregated for this row of data.   | this number will be 1. For 4:9 fea-  |
|            |                                    | ture densities, this number will be  |
|            |                                    | 4. Is set to NA for NimbleGen con-   |
|            |                                    | trol features not related to the ex- |
|            |                                    | periment.                            |

# Gene Expression Values (CALLS)

There are two types of CALLS files. The first type of CALLS file is for gene expression summaries of un-normalized data, and can be found on the path AuxillaryData\GeneExpressionValues\Calls on media deliverables for expression studies. If the array design has mismatches, these files are the ones that should be used to examine gene expression values where the mismatch probe.

The CALLS files contains a gene expression summary value for each gene in an expression array. If there are replicate probe sets, where may be multiple values for each gene, one for each replicate. The GENE\_EXPR\_OPTION will contain the CONTAINER name from the design if there are replicate probe sets, or WHOLE\_ARRAY if there are no replicates, or if the replicated sets were analyzed as a single probe set.

| Field Name             | Description                         | Notes                               |
|------------------------|-------------------------------------|-------------------------------------|
| IMAGE_ID               | The name of the image the data      | For NimbleGen data sets, this wil   |
|                        | was extracted from, minus the .tif  | be the array identifier plus any    |
|                        | extension                           | additional information, like wave-  |
|                        |                                     | length used to scan the array, or   |
|                        |                                     | photomultiplier tube setting. The   |
|                        |                                     | array ID will be all of the charac- |
|                        |                                     | ters before the first underscore.   |
| SEQ_ID                 | The NimbleGen sequence identi-      |                                     |
|                        | fier. Used to group the probe pairs |                                     |
|                        | together for determing gene ex-     |                                     |
|                        | pression summary values.            |                                     |
| PROBE_PAIRS            | The number of probe                 |                                     |
|                        | pairs for this SEQ_ID and           |                                     |
|                        | CONTAINER\GENE_EXPR_OPT             | ION                                 |
|                        | combination.                        |                                     |
| FILTERED_PROBE_PAIRS   | The number of probe                 | Outliers are those probe values     |
|                        | pairs for this SEQ_ID and           | that are greater than 3 standard    |
|                        | CONTAINER\GENE_EXPR_OPT             | Ideviations from the mean of the    |
|                        | combination after filtering out-    | probe set.                          |
|                        | liers.                              |                                     |
| Continued on next page |                                     |                                     |

| Field Name       | Description                                                                                                                                              | Notes                                                                                                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PM_AVG           | The gene expression summary<br>value for the gene calculated as the<br>mean of the signal intensities of<br>the perfect match probes only.               | Values are in linear scale, though<br>older version of this file might con-<br>tain log2 values.                                                                                                                                                             |
| PM_CV            | The coefficient of variation (CV) of the perfect match probes.                                                                                           | CV is calculated as the standard deviation of the values divided by the mean.                                                                                                                                                                                |
| MM_AVG           | The mean signal intensity of the mismatch probes only.                                                                                                   | Values are in linear scale, though<br>older version of this file might con-<br>tain log2 values.                                                                                                                                                             |
| MM_CV            | The coefficient of variation (CV) of the mismatch probes.                                                                                                | CV is calculated as the standard deviation of the values divided by the mean.                                                                                                                                                                                |
| DIFF_AVG         | The mean signal intensity of the<br>perfect match probes after sub-<br>tracting the signal of the mismatch<br>probes.                                    | Values are in linear scale, though<br>older version of this file might con-<br>tain log2 values. DIFF_AVG may<br>not equal to PM_AVG - MM_AVG<br>because DIFF_AVG is calculated<br>as the mean of the differences, and<br>there may be rounding differences. |
| DIFF_CV          | The coefficient of variation (CV)<br>of the values of the perfect match<br>signal minus the mismatch signal.                                             | CV is calculated as the standard deviation of the values divided by the mean.                                                                                                                                                                                |
| GENE_EXPR_OPTION | The CONTAINER name from the design file, if analysis was done 'by container' or WHOLE_ARRAY if all replicate probe sets were combined into a single set. | The default analysis is nor-<br>mally 'by container' . CON-<br>TAINER names are generally<br>name FORWARD/REVERSE,<br>BLOCK1/BLOCK2/etc. or other<br>similar conventions.                                                                                    |

Table 12.1 – continued from previous page

# Normalized Gene Expression Values (CALLS)

The second type of CALLS file is for gene expression summaries of normalized data, and can be found on the path AuxillaryData\NormalizedData\Calls on media deliverables for expression studies. The gene expression values in these files have been produced using the RMA (Robust Multichip Average) algorithm. There is a gene expression summary value for each gene in an expression array. If there are replicate probe sets, where may be multiple values for each gene, one for each replicate. The GENE\_EXPR\_OPTION will contain the CONTAINER name from the design if there are replicate probe sets, or WHOLE\_ARRAY if there are no replicates, or if the replicated sets were analyzed as a single probe set.

| Field Name       | Description                           | Notes                                 |
|------------------|---------------------------------------|---------------------------------------|
| IMAGE_ID         | The name of the image the data        | For NimbleGen data sets, this wil     |
|                  | was extracted from, minus the .tif    | be the array identifier plus any      |
|                  | extension                             | additional information, like wave-    |
|                  |                                       | length used to scan the array, or     |
|                  |                                       | photomultiplier tube setting. The     |
|                  |                                       | array ID will be all of the charac-   |
|                  |                                       | ters before the first underscore.     |
| SEQ_ID           | The NimbleGen sequence identi-        |                                       |
|                  | fier. Used to group the probe pairs   |                                       |
|                  | together for determing gene ex-       |                                       |
|                  | pression summary values.              |                                       |
| EXPRS            | The gene expression summary           | Values are in linear scale, though    |
|                  | value for the gene.                   | older version of this file might con- |
|                  |                                       | tain log2 values.                     |
| GENE_EXPR_OPTION | The CONTAINER name from the           | The default analysis is nor-          |
|                  | design file, if analysis was done 'by | mally 'by container' . CON-           |
|                  | container' or WHOLE_ARRAY if          | TAINER names are generally            |
|                  | all replicate probe sets were com-    | name FORWARD/REVERSE,                 |
|                  | bined into a single set.              | BLOCK1/BLOCK2/etc. or other           |
|                  |                                       | similar conventions.                  |