/* Last edited: Mar 18 11:55 2002 (klh) */ /********************************************************************** ** FILE: tree.c ** NOTES: ** Functions for the manipulation of trees **********************************************************************/ #include "tree.h" /********************************************************************* FUNCTION: assign_nodenumbers_Tnode DESCRIPTION: This function assigns node numbers to the internal nodes of the given Tnode, starting from the given, and returns the next free nodenumner RETURNS: unsigned int ARGS: struct Tnode * (tree) unsigned int (starting node number) NOTES: *********************************************************************/ unsigned int assign_nodenumbers_Tnode( struct Tnode *node, unsigned int start) { if (node != NULL) { start += assign_nodenumbers_Tnode( node->left, start ); start += assign_nodenumbers_Tnode( node->right, start ); node->nodenumber = start++; } return start; } /********************************************************************* FUNCTION: clone_Tnode DESCRIPTION: This function makes a complete copy of the tree rooted at the given node and returns it RETURNS: Tnode * ARGS: struct Tnode * NOTES: *********************************************************************/ struct Tnode *clone_Tnode( struct Tnode *source) { struct Tnode *dest = NULL; if (source != NULL) { dest = (struct Tnode *) malloc_util( sizeof( struct Tnode ) ); dest->distance = source->distance; dest->nodenumber = source->nodenumber; dest->bootstrap = source->bootstrap; dest->clust = clone_Cluster( source->clust ); if ( (dest->left = clone_Tnode( source->left )) != NULL) dest->left->parent = dest; if ( (dest->right = clone_Tnode( source->right )) != NULL) dest->right->parent = dest; } return dest; } /********************************************************************* FUNCTION: clone_Tree DESCRIPTION: This function makes a complete copy of the Tree and returns it RETURNS: struct Tree * ARGS: struct Tree * NOTES: *********************************************************************/ struct Tree *clone_Tree( struct Tree *source) { struct Tree *dest = NULL; if ( source != NULL ) { dest = (struct Tree *) malloc_util( sizeof( struct Tree ) ); dest->numnodes = source->numnodes; dest->child[0] = clone_Tnode( source->child[0] ); dest->child[1] = clone_Tnode( source->child[1] ); dest->child[2] = clone_Tnode( source->child[2] ); } return dest; } /********************************************************************* FUNCTION: compare_to_bootstrap_sample_Tnode DESCRIPTION: Updates the bootstrap values of the given Tnode, according to the topology of the given sample Tnode RETURNS: ARGS: Destination Tnode Sample Tnode The number of leaf nodes in each tree Boolean for whether the tree is binary or not NOTES: This function assumes that the given trees have been created by calling either neighbourjoin_buildtree or UPGMA_buildtree with the bootstrap boolean arguement set to true. A fatal error results if this is not the case. This is due to the fact that the information needed for the tree comparisons is determined when the trees are constructed *********************************************************************/ void compare_to_bootstrap_sample_Tnode( struct Tnode *dest, struct Tnode *sample, unsigned int numleaves, unsigned int is_binary) { unsigned int matchcounter, i; if (dest != NULL) { if (dest->child_ids != NULL) { /* we have to explore every non-terminal node of sample to see if the bit pattern is the same, or a mirror image. If yes, then this sub-tree exists in sample. The mirror image is to take care of the fact that trichotomius trees may be isomorphic but 'centred' at a different node. For non-trichotomous (i.e. rooted binary) trees, it is erroneous to allow these 'mirror image' cases. It is easy to found out what sort of trees we have by examining the child fields in one of the trees. If only one of them is non-null, then we have a rooted binary tree. */ if (sample != NULL) { if (sample->child_ids != NULL) { matchcounter = 0; for(i=0; i < numleaves; i++) { if (dest->child_ids[i] == sample->child_ids[i]) { matchcounter++; } } if ((matchcounter == numleaves) || (matchcounter == 0 && ! is_binary)) { dest->bootstrap++; /* printf ("Incrementing node %d...\n", dest->nodenumber ); */ } compare_to_bootstrap_sample_Tnode( dest, sample->left, numleaves, is_binary ); compare_to_bootstrap_sample_Tnode( dest, sample->right, numleaves, is_binary ); } } } } } /********************************************************************* FUNCTION: empty_Tree DESCRIPTION: Creates and returns a tree with null nodes RETURNS: struct Tree * (trees.h) ARGS: NOTES: *********************************************************************/ struct Tree *empty_Tree( void ) { struct Tree *ret; ret = (struct Tree *) malloc_util(sizeof( struct Tree )); ret->child[0] = NULL; ret->child[1] = NULL; ret->child[2] = NULL; ret->numnodes = 0; return ret; } /********************************************************************* FUNCTION: free_Tnode DESCRIPTION: This function releases the memory used by this Tnode and all of its children RETURNS: A null pointer ARGS: struct Tnode * NOTES: *********************************************************************/ void *free_Tnode( struct Tnode *tn ) { if ( tn != NULL ) { tn->clust = free_Cluster( tn->clust ); tn->left = free_Tnode( tn->left ); tn->right = free_Tnode( tn->right ); if (tn->child_ids != NULL) { tn->child_ids = free_util( tn->child_ids ); } tn = free_util( tn ); } return tn; } /********************************************************************* FUNCTION: free_Tree DESCRIPTION: This function releases the memory used br the Tnode chain in the given Tree RETURNS: A null pointer ARGS: struct Tree NOTES: *********************************************************************/ void *free_Tree( struct Tree *t) { if ( t != NULL ) { t->child[0] = free_Tnode( t->child[0] ); t->child[1] = free_Tnode( t->child[1] ); t->child[2] = free_Tnode( t->child[2] ); t = free_util( t ); } return t; } /********************************************************************* FUNCTION: get_root_Tnode DESCRIPTION: This function takes a three node tree (struct Tree), and returns a Tnode as the 'root' of the tree. The root is inserted somewhat arbitraily between the three top-level nodes RETURNS: struct Tnode * ARGS: struct Tree NOTES: The nodes of the given tree are cloned for use. This means that the old tree is still available and safe on return, and must be freed when finished with. The rooted tree returned by this function must be freed by a call to free_Tnode *********************************************************************/ struct Tree *get_root_Tnode( struct Tree *source ) { struct Tnode *focal, *root, *children[3]; struct Tree *ret; unsigned int rootleft, focalleft, focalright; Distance maxdist; /***** Method ************** 0. Clone the given tree 1. Create the imaginary node between the three nodes in the Tree 2. Create a root node; **************************/ children[0] = clone_Tnode( source->child[0] ); children[1] = clone_Tnode( source->child[1] ); children[2] = clone_Tnode( source->child[2] ); focal = new_interior_Tnode( source->numnodes ); root = new_interior_Tnode( source->numnodes + 1 ); /* arbitrarity choose halfway along the longest branch between the three nodes as the position for the root */ maxdist = children[0]->distance; rootleft = 0; focalleft = 1; focalright = 2; if (children[1]->distance > maxdist) { rootleft = 1; focalleft = 0; focalright = 2; } if (children[2]->distance > maxdist) { rootleft = 2; focalleft = 0; focalright = 1; } /* sort out distances; root node has zero distances */ children[rootleft]->distance = children[rootleft]->distance * 0.5; focal->distance = children[rootleft]->distance; /* now sort out the links */ root->right = focal; root->left = children[rootleft]; focal->parent = children[rootleft]->parent = root; focal->left = children[focalleft]; focal->right = children[focalright]; children[focalleft]->parent = children[focalright] = focal; ret = empty_Tree(); ret->child[0] = root; ret->numnodes = source->numnodes + 2; return ret; } /********************************************************************* FUNCTION: new_interior_Tnode (unsigned int) DESCRIPTION: This function handles the simple task of allocating the space for a new interior (non-leaf) tree node, filling it with what it knows, and returning it. RETURNS: struct Tnode * (trees.h) ARGS: A integer to hold the node number. NOTES: This function s for creating internal nodes, which have no string id but just a number identifier *********************************************************************/ struct Tnode *new_interior_Tnode( unsigned int label ) { struct Tnode *newNode; newNode = (struct Tnode *) malloc_util(sizeof(struct Tnode)); newNode->left = NULL; newNode->right = NULL; newNode->parent = NULL; newNode->distance = 0.0; newNode->nodenumber = label; newNode->clust = NULL; newNode->bootstrap = 0; newNode->child_ids = NULL; return newNode; } /********************************************************************* FUNCTION: new_leaf_Tnode(int, char *) DESCRIPTION: This function handles the simple task of allocating the space for a new tree node, filling it with what it knows, and returning it. RETURNS: struct Tnode * (trees.h) ARGS: A integer to hold the sequence number associated with the node The name of the node NOTES: This function is for creating leaf nodes, which have a name. *********************************************************************/ struct Tnode *new_leaf_Tnode(unsigned int label, struct Cluster *given) { struct Tnode *newNode; newNode = new_interior_Tnode( label ); newNode->clust = given; return newNode; } /********************************************************************* FUNCTION: read_newhampshire_Tnode DESCRIPTION: Construct a Tnode from the given file handle RETURNS: The total number of nodes constructed as a result of the call ARGS: File handle (assumed in New Hampshire format) NOTES: Due to the fact that the neighbourjoining implementation presented in these modules has 'clusters' of sequences at the leaf nodes; This means that the written tree will no longer be binary, so this method wil no longer read in the trees produced by write_newhampshire_Tree. I should look into ways around this *********************************************************************/ unsigned int read_newhampshire_Tnode( FILE *handle, struct Tnode **nodeptrptr, struct Tnode *parent, unsigned int nodecounter ) { char c; unsigned int index; struct Sequence *newseq; double distance; fscanf( handle, "%1s", &c); if ( c == '(' ) { /* we do not know the node number until we have parsed the children, so give it the value zero for now */ *nodeptrptr = new_interior_Tnode( 0 ); nodecounter += read_newhampshire_Tnode( handle, &((*nodeptrptr)->left), *nodeptrptr, nodecounter ); fscanf( handle, "%1s", &c); /* should be , */ if ( c != ',') fatal_util( "Parse error: ',' expected"); nodecounter += read_newhampshire_Tnode( handle, &((*nodeptrptr)->right), *nodeptrptr, nodecounter ); /* (*nodeptrptr)->nodenumber = nodecounter++; */ fscanf( handle, "%1s", &c); /* should be ) */ if ( c != ')') fatal_util( "Parse error: ')' expected"); fscanf( handle, "%1s", &c); /* should be : */ if ( c != ':') fatal_util( "Parse error: ':' expected"); if (!fscanf( handle, "%lf", &distance )) fatal_util( "Parse error: floating point number expexted"); } else { /* Must be the first char of an identifier */ ungetc( c, handle ); newseq = empty_Sequence(); newseq->name = (char *) malloc_util( MAX_NAME_LENGTH * sizeof( char ) ); for( index=0; (newseq->name[index] = fgetc( handle )) != ':'; index++); newseq->name[index] = '\0'; if (!fscanf( handle, "%lf", &distance )) fatal_util( "Parse error: floating point number expexted"); *nodeptrptr = new_leaf_Tnode( nodecounter++, single_Sequence_Cluster( newseq ) ); } (*nodeptrptr)->parent = parent; (*nodeptrptr)->distance = distance; return nodecounter; } /********************************************************************* FUNCTION: read_newhampshire_Tree DESCRIPTION: Constructs a tree from the given file handle RETURNS: Tree * ARGS: A handle to the file (assumed in New Hamshire format) NOTES: Numbering of internal nodes is abandoned in favour of giving leaf nodes numbers from 0 to the number of leaves in the tree. This makes them handy indices into a distance matrix for example *********************************************************************/ struct Tree *read_newhampshire_Tree( FILE *handle ) { unsigned int numnodes = 0; char c; struct Tree *thetree = empty_Tree(); fscanf( handle, "("); numnodes += read_newhampshire_Tnode( handle, &thetree->child[0], NULL, numnodes); fscanf( handle, "%1s", &c ); /* should be , */ if ( c != ',') fatal_util( "Parse error: ',' expected"); numnodes += read_newhampshire_Tnode( handle, &thetree->child[1], NULL, numnodes); fscanf( handle, "%1s", &c ); /* should be , */ if ( c != ',') fatal_util( "Parse error: ',' expected"); numnodes += read_newhampshire_Tnode( handle, &thetree->child[2], NULL, numnodes); fscanf( handle, "%1s", &c); if ( c != ')') fatal_util( "Parse error: ')' expected"); fscanf( handle, "%1s", &c); if ( c != ';') fatal_util( "Parse error: ';' expected"); numnodes += assign_nodenumbers_Tnode( thetree->child[0], numnodes ); numnodes += assign_nodenumbers_Tnode( thetree->child[1], numnodes ); numnodes += assign_nodenumbers_Tnode( thetree->child[2], numnodes ); thetree->numnodes = numnodes; return thetree; } /********************************************************************* FUNCTION: scale_bootstraps_Tnode DESCRIPTION: This function traverses the given Tnode, dividing the bootstrap values by the given number RETURNS: ARGS: Tnode A the number of bootstrap iterations that were performed NOTES: *********************************************************************/ void scale_bootstraps_Tnode( struct Tnode *node, unsigned int iters) { if (node != NULL) { node->bootstrap = (int) (((double) node->bootstrap / (double) iters) * 100.0); scale_bootstraps_Tnode( node->left, iters); scale_bootstraps_Tnode( node->right, iters); } } /********************************************************************* FUNCTION: scale_bootstraps_Tree DESCRIPTION: This function traverses the gieven tree, dividing the bootstrap values by the given number RETURNS: ARGS: Tree A the number of bootstrap iterations that were performed NOTES: *********************************************************************/ void scale_bootstraps_Tree( struct Tree *thetree, unsigned int iters) { if (thetree != NULL) { /* The first node will always be defined...(he says) */ scale_bootstraps_Tnode( thetree->child[0], iters ); if (thetree->child[1] != NULL) { scale_bootstraps_Tnode( thetree->child[1], iters ); if (thetree->child[2] != NULL) { scale_bootstraps_Tnode( thetree->child[2], iters ); } } } } /********************************************************************* FUNCTION: update_bootstraps_Tree DESCRIPTION: Updates the bootstrap values of the destination tree, according to the topology of the given sample tree RETURNS: ARGS: Destination tree Sample tree the number of leaf nodes in the tree NOTES: This function assumes that the given trees have been created by calling either neighbourjoin_buildtree or UPGMA_buildtree with the bootstrap boolean arguement set to true. A fatal error results if this is not the case Another thing to note is that the method uses node numbers for comparisons. This means that both ethe sample and reference trees must have been built from the same initial list of nodes, which is fine for bootstrapping, because the leaf nodes are stored in the order in which appear in the alignment *********************************************************************/ void update_bootstraps_Tree( struct Tree *dest, struct Tree *sample, unsigned int numleaves) { unsigned int is_binary,i,j; is_binary = ( dest->child[1] == NULL && dest->child[2] == NULL )?1:0; for (i=0; i < 3; i++) { for (j=0; j < 3; j++) { update_bootstraps_Tnode( dest->child[i], sample->child[j], numleaves, is_binary ); } } } /********************************************************************* FUNCTION: update_bootstraps_Tnode DESCRIPTION: Updates the bootstrap values of the given Tnode, according to the topology of the given sample Tnode RETURNS: ARGS: Destination Tnode Sample Tnode The number of leaf nodes in each tree Boolean for whether the tree is binary or not NOTES: This function assumes that the given trees have been created by calling either neighbourjoin_buildtree or UPGMA_buildtree with the bootstrap boolean arguement set to true. A fatal error results if this is not the case *********************************************************************/ void update_bootstraps_Tnode( struct Tnode *dest, struct Tnode *sample, unsigned int numleaves, unsigned int is_binary) { compare_to_bootstrap_sample_Tnode( dest, sample, numleaves, is_binary); if (dest != NULL) { update_bootstraps_Tnode( dest->left, sample, numleaves, is_binary); update_bootstraps_Tnode( dest->right, sample, numleaves, is_binary); } } /********************************************************************* FUNCTION: write_clustering_data_Tnode DESCRIPTION: This routine prints a text description of the clustering details of the given Tnode. It was written for the old implementation, where leaves were named "leaf_1", "leaf_2" etc, and it would often be the case that each leaf would contain several sequences. With the current implementation, this function is not used; a new-hampshire output of each cluster is printed in-situ, preserving sequence names from the original alignment RETURNS: ARGS: File handle TNode * NOTES: *********************************************************************/ void write_clustering_data_Tnode( FILE *handle, struct Tnode *node) { unsigned int i; if (node != NULL) { if (node->left == NULL && node->right == NULL && node->clust != NULL) { /* we have a leaf node */ if (node->clust->clustersize == 0 || node->clust->members == NULL) fatal_util("Fatal Error: encountered a leaf node with no cluster members"); else if (node->clust->clustersize > 1) { fprintf( handle, "Cluster_%d:\n", node->nodenumber); for( i=0; i < node->clust->clustersize; i++) { if ( i == 0 ) fprintf( handle, "\t" ); else if ( i % 4 == 0 ) fprintf( handle, "\n\t" ); else fprintf( handle, ", "); fprintf( handle, "%s", node->clust->members[i]->name); } fprintf( handle, "\n\n"); } } else { write_clustering_data_Tnode( handle, node->left ); write_clustering_data_Tnode( handle, node->right ); } } } /********************************************************************* FUNCTION: write_debug_Tnode DESCRIPTION: Writes the given Tnode to the give file handle in 'debug' format RETURNS: ARGS: File handle TNode * Integer offset NOTES: *********************************************************************/ void write_debug_Tnode( FILE *handle, struct Tnode *node, unsigned int offset) { unsigned int i,j; if (node != NULL) { /* We need to determine whether the node is a leaf or internal; since in this implementation internal nodes do not have names, it is sufficient to check the nodes name for nullness; however, this precludes the possibilities of internal nodes being given names in the future, hence the check for internalness is made on the basis of the nullness of the children. */ if ( node->left == NULL && node->right == NULL ) { /* this is a leaf node, so its cluster must have members; pain if not */ if (node->clust->clustersize == 0 || node->clust->members == NULL) fatal_util( "Fatal Error: encountered a leaf node with no cluster info"); else { for (i=0; i < node->clust->clustersize; i++) { for (j=0; j < offset; j++) fprintf( handle, " "); /* all leaves in the cluster are printed at the same offset */ fprintf( handle, // "%d:%s:%.5f\n", "%d:%s:%g\n", node->nodenumber, node->clust->members[i]->name, node->distance); } } } else if ( node->left != NULL && node->right != NULL ) { for (j=0; j < offset; j++) fprintf( handle, " "); // fprintf(handle, "Node %d:%.5f\n", node->nodenumber, node->distance); fprintf(handle, "Node %d:%g\n", node->nodenumber, node->distance); write_debug_Tnode( handle, node->left, offset+2); write_debug_Tnode( handle, node->right, offset+2); } /* else do nothing */ fflush( handle ); } } /********************************************************************* FUNCTION: write_debug_Tree DESCRIPTION: prints the given Tree in a format suitable for debugging RETURNS: ARGS: File handle Tree * NOTES: *********************************************************************/ void write_debug_Tree( FILE *handle, struct Tree *thetree) { if (thetree != NULL) { write_debug_Tnode( handle, thetree->child[0], 0 ); write_debug_Tnode( handle, thetree->child[1], 0 ); write_debug_Tnode( handle, thetree->child[2], 0 ); fflush( handle ); } } /********************************************************************* FUNCTION: write_MUL_flattened_Tnode DESCRIPTION: Prints the given tree as a MUL format alignment, with the sequences in 'tree order' RETURNS: ARGS: File handle TNode * NOTES: *********************************************************************/ void write_MUL_flattened_Tnode( FILE *handle, struct Tnode *node) { unsigned int i,j; if (node != NULL) { write_MUL_flattened_Tnode( handle, node->left ); if (node->clust != NULL) { for( i=0; i < node->clust->clustersize; i++ ) { fprintf( handle, "%-24s", node->clust->members[i]->name ); for (j=0; j < node->clust->members[i]->length; j++) fprintf( handle, "%c", node->clust->members[i]->seq[j] ); fprintf( handle, "\n"); } } write_MUL_flattened_Tnode( handle, node->right ); } } /********************************************************************* FUNCTION: write_MUL_flattened_Tree DESCRIPTION: Prints the given tree as a MUL format sequence alignment, with the sequences in 'tree order' RETURNS: ARGS: File handle Tree * NOTES: *********************************************************************/ void write_MUL_flattened_Tree( FILE *handle, struct Tree *tr) { if (tr != NULL) { write_MUL_flattened_Tnode( handle, tr->child[0] ); write_MUL_flattened_Tnode( handle, tr->child[1] ); write_MUL_flattened_Tnode( handle, tr->child[2] ); } fflush( handle ); } /********************************************************************* FUNCTION: write_newhampshire_Tnode DESCRIPTION: prints the given Tree in 'New Hampshire' text format to the given file handle RETURNS: ARGS: File handle TNode * Whether or not to show bootstrap values NOTES: *********************************************************************/ void write_newhampshire_Tnode( FILE *handle, struct Tnode *node, unsigned int show_bootstraps ) { if (node != NULL) { /* We need to determine whether the node is a leaf or internal; since in this implementation internal nodes do not have names, it is sufficient to check the nodes name for nullness; however, this precludes the possibilities of internal nodes being given names in the future, hence the check for internalness is made on the basis of the nullness of the children. */ if ( node->left == NULL && node->right == NULL) { /* this is a leaf node, so its cluster must have members; pain if not */ if (node->clust->clustersize == 0 || node->clust->members == NULL) fatal_util( "Fatal Error: encountered a leaf node with no cluster info"); else if (node->clust->clustersize == 1) // fprintf( handle, "%s:%.5f", node->clust->members[0]->name, node->distance ); fprintf( handle, "%s:%g", node->clust->members[0]->name, node->distance ); else { /* if there is more than one sequence belonging to the cluster, then this piece of code will generate som internal nodes in the output tree with no bootstrap values. Such is life... */ unsigned int i; for (i=0; i < node->clust->clustersize - 1; i++) { // fprintf( handle, "(\n%s:%.5f,\n", node->clust->members[i]->name, 0.0 ); fprintf( handle, "(%s:%g,", node->clust->members[i]->name, 0.0 ); } // fprintf( handle, "%s:%.5f)\n", node->clust->members[i]->name, 0.0); fprintf( handle, "%s:%g)", node->clust->members[i]->name, 0.0); for (i=0; i < node->clust->clustersize - 2; i++) { // fprintf( handle, ":%.5f)\n", 0.0 ); fprintf( handle, ":%g)", 0.0 ); } // fprintf( handle, ":%.5f", node->distance); fprintf( handle, ":%g", node->distance); /* fprintf( handle, "Cluster_%d:%.5f", node->nodenumber, node->distance ); */ } } else if ( node->left != NULL && node->right != NULL ) { // fprintf( handle, "(\n"); fprintf( handle, "("); write_newhampshire_Tnode( handle, node->left, show_bootstraps ); // fprintf( handle, ",\n" ); fprintf( handle, "," ); write_newhampshire_Tnode( handle, node->right, show_bootstraps ); if (show_bootstraps) { // fprintf( handle, ")\n%d:%.5f", node->bootstrap, node->distance ); fprintf( handle, ")%d:%g", node->bootstrap, node->distance ); } else { // fprintf( handle, ")\n:%.5f", node->distance); fprintf( handle, "):%g", node->distance); } } /* else do nothing */ } fflush( handle ); } /********************************************************************* FUNCTION: write_newhampshire_Tree DESCRIPTION: prints the given Tnode in 'New Hampshire' text format to the given file handle RETURNS: ARGS: File handle TNode * NOTES: *********************************************************************/ void write_newhampshire_Tree( FILE *handle, struct Tree *thetree, unsigned int show_bootstraps) { /* write_newhampshire_Tnode always places parenttheses around the sub-tree if there is more than one sub-node, but this is not appropriate if there there are no other sub-trees to draw at this level. Hence there is a special case for a single sub-tree (as returned by the UPGMA method) */ if (thetree != NULL) { if (thetree->child[0] != NULL) { if (thetree->child[1] == NULL) { /* draw rooted tree */ if (thetree->child[0]->left != NULL && thetree->child[0]->right != NULL) { // fprintf( handle, "(\n"); fprintf( handle, "("); write_newhampshire_Tnode( handle, thetree->child[0]->left, show_bootstraps ); // fprintf( handle, ",\n"); fprintf( handle, ","); write_newhampshire_Tnode( handle, thetree->child[0]->right, show_bootstraps ); // fprintf( handle, ");\n"); fprintf( handle, ");"); } else { /* this is a leaf node, and leaf nodes may contain a single sequence or a cluser of sequences. If this leaf contains a single sequence, then we have a tree of one sequence, in which case we print an error, because trees of one sequence do not make sense */ if (thetree->child[0]->clust->clustersize == 1) fatal_util( "Cannot build a tree with a single sequence %s", thetree->child[0]->clust->members[0]->name); else { unsigned int i; for (i=0; i < thetree->child[0]->clust->clustersize - 1; i++) // fprintf( handle, "(\n%s:%.5f,\n", thetree->child[0]->clust->members[i]->name, 0.0 ); fprintf( handle, "(%s:%g,", thetree->child[0]->clust->members[i]->name, 0.0 ); // fprintf( handle, "%s:%.5f", thetree->child[0]->clust->members[i]->name, 0.0); fprintf( handle, "%s:%g", thetree->child[0]->clust->members[i]->name, 0.0); for (i=0; i < thetree->child[0]->clust->clustersize - 2; i++) // fprintf( handle, ")\n:%.5f)\n", 0.0 ); fprintf( handle, "):%g)", 0.0 ); // fprintf( handle, ");\n"); fprintf( handle, ");"); } } } else { // fprintf( handle, "(\n"); fprintf( handle, "("); write_newhampshire_Tnode( handle, thetree->child[0], show_bootstraps ); // fprintf( handle, ",\n"); fprintf( handle, ","); write_newhampshire_Tnode( handle, thetree->child[1], show_bootstraps ); if (thetree->child[2] != NULL) { // fprintf( handle, ",\n"); fprintf( handle, ","); write_newhampshire_Tnode( handle, thetree->child[2], show_bootstraps ); } // fprintf( handle, ");\n"); fprintf( handle, ");"); } } } fflush( handle ); }