
Package ‘happy’
November 14, 2005

Version 2.0.3

Date 2005-11-14

Title Quantitative Trait Locus genetic analysis in Heterogeneous Stocks

Author Richard Mott <Richard.Mott@well.ox.ac.uk>

Maintainer Richard Mott <Richard.Mott@well.ox.ac.uk>

Depends R

Description happy is an R interface into the HAPPY C package for fine-mapping Quantitative Trait
Loci (QTL) in Heterogenous Stocks (HS). An HS is an advanced intercross between (usually
eight) founder inbred strains of mice. HS are suitable for fine-mapping QTL. The happy package
is an extension of the original C program happy; it uses the C code to compute the probability of
descent from each of the founders, at each locus position, but the happy packager allows a much
richer range of models to be fit to the data.

License GPL version 2 or newer

URL http://www.r-project.org, http://www.well.ox.ac.uk/happy

R topics documented:

Happy .2
epistasis .7
gfit .8
happy-internal .11
happyplot .11
cache .12
hdesign .14
hfit .15
mergelist .17
mergematrices .18
mergeprepare .19

Index 22

1

2 Happy

Happy Quantitative Trait Locus analysis in Heterogeneous Stocks

Description

happy is anR interface into the HAPPY C package for fine-mapping Quantitative Trait Loci (QTL)
in Heterogenous Stocks (HS). HAPPY uses a multipoint analysis which offers significant improve-
ments in statistical power to detect QTLs over that achieved by single-marker association. An HS
is an advanced intercross between (usually eight) founder inbred strains of mice. HS are suitable
for fine-mapping QTL. The happy package is an extension of the original C program happy; it uses
the C code to compute the probability of descent from each of the founders, at each locus position,
but the happy packager allows a much richer range of models to be fit to the data.

happy() is used to initialise input files and perform dynamic programming in C. Model fitting is
then performed by subsequent calls to hfit() etc. Input file foramt is described athttp://www.
well.ox.ac.uk/happy

Usage

happy(datafile, allelesfile, generations=200, standardise=FALSE,
phase="unknown", file.format="happy", missing.code="NA",

do.dp=TRUE, min.dist=1.0e=5)
happy.matrices(h)
happy.save(h, file)

Arguments

datafile name of the text file containing the genotype and phenotype data in HAPPY
format

allelesfile

generations the number of breeding generations in the HS

standardise if TRUE then the phenotype is transformed to have mean 0 and variance 1.
This does not affect the identification of QTL but can make the interpretation of
effects easier.

phase If phase=="unknown" then the phase of the genotypes is unknown and no at-
tempt is made to infer it. If phase="estimate" then it is estimated using parental
genotype data when available. If phase="known" then it is assumed the phase
of the input genotypes is correct i.e. the first and second alleles in each geno-
type for an individual are on the respectively the first and second chromosomes.
Where phase is known this setting should increase power, but it will cause er-
roneous output if it is set when the data are unphased. If phase="estimate" then
file.format="ped" is assumed automatically, because the input data file must be
in ped-file format in order to specify parental information.

file.format The format of the genotype file. Either "happy" (the default) or "ped". "happy"
files do not contain any pedigree information. They are structured so that one
record corresponds to an individual. The first two fields are the subject id
(unique) and the phenotype value. The remaining fields are the N genotypes
for the subject (where N is the number of markers specified in the alleles file),
arranged in 2N fields all separated by spaces.

http://www.well.ox.ac.uk/happy
http://www.well.ox.ac.uk/happy

Happy 3

The "ped" file format is similar except that in place of the two columns "id"
and "phenotype" in the original "happy" file format there should be six columns
"family", "id", "mother", "father", "gender", "phenotype". Note that the "fam-
ily" field can be constant so long as the id’s are all unique. The resultant name
of each subject is constructed as "family.id", which must be unique. The geno-
type data then follow as in "happy" format. Note that if phase="estimate" then
file.format="ped" automatically; it is only necessary to use this option when
the input file format is "ped" but it is desired not to make any use of pedigree
information.

missing.code The code for a missing allele in the input file. Defaults to "NA". Note that old
HAPPY files use "ND"

do.dp A switch that turns off the dynamic programming part of happy. By default
dynamic programmig is performed. The only reason to turn this off is when
only the genotypes are required.

min.dist The minimum genetic distance (in centiMorgans) allowed between adjacent
merkers. Markers positioned closer than min.dist in the input file are treated
as being min.dist cM apart. This prevents problems with markers at the same
position, and which HAPPY cannot process.

h An object of class "happy"

file Name of file in which to save data

Details

Biological Background

Most phenotypes of medical importance can be measured quantitatively, and in many cases the
genetic contribution is substantial, accounting for 40% or more of the phenotypic variance. Consid-
erable efforts have been made to isolate the genes responsible for quantitative genetic variation in
human populations, but with little success, mostly because genetic loci contributing to quantitative
traits (quantitative trait loci, QTL) have only a small effect on the phenotype. Association studies
have been proposed as the most appropriate method for finding the genes that influence complex
traits. However, family-based studies may not provide the resolution needed for positional cloning,
unless they are very large, while environmental or genetic differences between cases and controls
may confound population-based association studies.

These difficulties have led to the study of animal models of human traits. Studies using experimental
crosses between inbred animal strains have been successful in mapping QTLs with effects on a
number of different phenotypes, including behaviour, but attempts to fine-map QTLs in animals
have often foundered on the discovery that a single QTL of large effect was in fact due to multiple
loci of small effect positioned within the same chromosomal region. A further potential difficulty
with detecting QTLs between inbred crosses is the significant reduction in genetic heterogeneity
compared to the total genetic variation present in animal populations: a QTL segregating in the
wild need not be present in the experimental cross.

In an attempt to circumvent the difficulties encountered with inbred crosses, we have been using a
genetically heterogeneous stock (HS) of mice for which the ancestry is known. The heterogeneous
stock was established from an 8 way cross of C57BL, BALB/c, RIII, AKR, DBA/2, I, A and C3H/2
inbred strains. Since its foundation 30 years ago, the stock has been maintained by breeding from
40 pairs and, at the time of this experiment, was in its 60th generation. Thus each chromosome
from an HS animal is a fine-grained genetic mosaic of the founder strains, with an average distance
between recombinants of 1/60 or 1.7 cM.

Theoretically, the HS offers at least a 30 fold increase in resolution for QTL mapping compared
to an F2 intercross. The high level of recombination means that fine-mapping is possible using

4 Happy

a relatively small number of animals; for QTLs of small to moderate effect, mapping to under
0.5 cM is possible with fewer than 2,000 animals. The large number of founders increases the
genetic heterogeneity, and in theory one can map all QTLs that account for progenitor strain genetic
differences. Potentially, the use of the HS offers a substantial improvement over current methods
for QTL mapping.

Problem Statement and Requirements

1. HAPPY is designed to map QTL in Heterogeneous Stocks (HS), ie populations founded from
known inbred lines, which have interbred over many generations. No pedigree information is
required.

2. Obviously, phenotypic values for the trait must be known for all individuals. It is preferable
that these are normally distributed because HAPPY uses Analysis of Variance F statistics to
test for linkage (however, a permutation test can be used instead).

3. For each genotyped marker, it is necessary to know the ancestral alleles in the inbred founders
(which by definition must be homozygous), and the genotypes from the individuals in the final
generation.

4. The chromosomal position in centiMorgans of each marker must be known.

5. Missing data are accomodated provided these are due to random failures in the genotyping
and not selective genotyping based on the trait values (however, it is permissible to selectively
genotype all the markers provided the same individuals are genotyped at each locus).

What HAPPY does

HAPPY’s analyis is essentially two stage; ancestral haplotype reconstruction using dynamic pro-
gramming, followed by QTL testing by linear regression:

• Assume that at a QTL, a pair of chromosomes originating from the progenitor strains, la-
belleds, t contribute an unknown amountTst to the phenotype. In the special case where the
contribution from each chromosome is additive at the locus thenTst = Ts + Tt,say.

• a test for a QTL is equivalent to testing for differences between theT ’s.

• A dynamic-programming algorithm is used to compute the probabilityFiLst that a given in-
dividual i has the ancestral alleless, t at locus labelledL, conditional upon all the genotype
data for the individual. Then the expected phenotype is

y =
∑
st

TstFiLst

, and theT ’s are estimated by a linear regression of the observed phenotypes on these expected
values across all individuals, followed by an analysis of variance to test whether the progenitor
estimates differ significantly.

• The method’s power depends on the ability to distinguish ancestral haplotypes across the
interval; clearly the power will be lower if all markers in a region have the same type of non-
informative allele distribution, but the markers can share information where there is a mixture.

• All inference is based on regression of the phenotypes on the probabilities of descent from the
founder loci,Fnst.

Although the models are presented here in the linear model framework (ie least-squares estimation,
with ANOVA F-tests), it is of course straighforward to extend them toR’s generalised linear model
framework. Multivariate analysis is also possible.

It is straighforward to fit models involving the effects of multiple loci and of covariates. It is easiest
to see this by rewriting the problem in standard linear modelling notation. Consider first the case
of fitting a QTL at a locus,L. Let y be the vector of trait values. LetXL be the design matrix

Happy 5

for fitting a QTL at the locusL. Let tL be the vector of parameters to be estimated at the locus.
For an additive QTL, the paramters are the strain effect sizes; for a full interaction model there is a
paramter for every possible strain combination. Then the one-QTL model is

E(y) = XLtL

There areS(S − 1)/2 parameters to be estimated in a full model allowing for interactions between
the alleles within the locus, andS − 1 parameters in an additive model. For the full model, the
i, j’th element of the design matrixX is related to the strain probabilities thus:

XLij = FiLst

, where
j(s, t) = min(s + S(t− 1), t + S(s− 1)

and for the additive model
XLij =

∑∑∑
s

FiLsj

More complex models

To add covariates to the model (for instance sex or age) we add additional columnsC to the design
matrix:

E(y) = [XL‖C] (tL‖c)

whereC is a design matrix representing the covariates of interest, andc are the parameters to
be estimated.(tL‖c) represents the vector formed by adjoining the vectorstL andc. Note that at
presentC must be a numeric matrix: factors must be explicitly converted into columns of dummy
variables.

Similarly to fit an additional locusK we adjoin the design matrixXK , for example:

E(y) = [XL‖XK‖C] (tL‖tK‖c)

(this is essentiallycomposite interval mapping). The happy package allows the inclusion of ar-
bitrary covariate matrices, which can include other loci; new loci are then tested to see if they
significantly improve the fit conditional upon the presence of the covariates. In this way we can
analyse any number of linear combinations of loci and covariates.

Epistasis, or the interaction between loci, is supported as well. At present the package can test for
interactions between unlinked loci, but not linked loci. The test compares the fit between the sum
of the additive contributions from each locus and the interaction. This is accomplished as follows:
Let XL, XK be the design matrices for the lociL,K. Let mL be the number of columns inXL

Then form a matrixXLK whosemLmK columns are formed by multiplying the elements in each
pair of columns in the original matrices.

Merging Strains

An important feature of the happy package is the suite of functions to merge strains together. The
models described above (particularly the full interaction models) have the disadvantage that the
fits sometimes involve a larger number of parameters, with many degrees of freedom. This is
particularly true for full non-additive models and for epistasis. For example in an 8-strain HS, 28
df are required to fir a full model for a single locus. Large numbers of degrees of freedom have two
problems: firstly the models may become overspecified, and secondly even if there are plenty of
degrees of freedom for the residual error, the power to detect an effect is diluted.

6 Happy

A partial solution is to note that since most polymorphisms are diallelic (eg SNPs), it makes sense
to group the strains according to their alleles at some polymorphic locus. This corresponds to op-
erating with design matrices in which certain columns are combined by adding their corresponding
elements together. A diallelic merge reduces the number of degrees of freedom dramatically: only 3
df (instead of 28df) are required to fit a full model at a locus (and only 1 df instead of 7df for the ad-
dtive model), and an epistatic interaction between two merged loci will involve only 3df (additive)
or 8df (full).

Value

happy() returns an object of type happy, which should be passed onto model-fitting functions such
as hfit(). A happy object ’h’ is a list with a number of useful members:

strains a character vector containing the names of the founder strains

markers a character vector containing the names of the markers, in map order

map a numeric vector containing the map coordinates in centiMorgans of the markers

subjects a character vector containing the subject names

phenotype a numeric vector containing the subject phenotypes

handle a numeric index used internally by the C-code. Do not change.

matrices a list of matrices used in model fitting (only created after a call to happy.matrices())

use.pedigrees boolean variable indicating whether pedigree information was used to help de-
termine the phase of the genotypes

phase.known boolean variable indicating whether or not the phase of the genotypes is assumed
to be known

happy.save() will save a happy object to a file so that it can be re-used in a later session with the
load() command.

happy.matrices() is not normally called directly - its function is to copy all the dynamic-programming
matrices created by a call to happy() from the underlying C memory space into R objects. The ob-
ject returned is still a happy object, but with an additional component ’matrices’. It can be used
in exactly the same way as a normal happy object except that the underlying C memory is no
longer used. When a happy object is saved using happy.save() is is first converted by a call to
happy.matrices(), and when a happy object is reloaded using load() it uses matrices stored in R
memory. Thus these functions are a useful way to save computing time - the dynamic programming
step need only be performed once, the data can be persisted to disk and then re-used (e.g. to analyse
multiple phenotypes) at a later date.

Author(s)

Richard Mott

References

Mott R, Talbot CJ, Turri MG, Collins AC, Flint J. A method for fine mapping quantitative trait loci
in outbred animal stocks. Proc Natl Acad Sci U S A. 2000 Nov 7;97(23):12649-54.

See Also

hfit(), mergefit(), happyplot()

epistasis 7

Examples

Not run: h <- happy('HS.data', 'HS.alleles', generations=200)
Not run: happy.save(h,'h.Rdata')
Not run: load('h.Rdata')

epistasis Analysis of Epistasis between Markers

Description

epistasis() will test for a statistical interaction between two sets of markers within the happy frame-
work. The markers should be sufficiently far apart that they are unlinked (in practice 10cM for a 30
generation HS is sufficient). A partial F-test is performed to test if a model allowing for interactions
fits better than a model in which each marker’s contribution is additive between loci. Note that the
effect of each marker within a locus can be either additive or full. Merging of strain is permitted.

epistasispair() is the same as epistasis() except that only one pair of markers is tested.

Usage

epistasis(h, markers1, markers2, merge1=NULL, merge2=NULL,
model='additive', verbose=FALSE, family='gaussian')
epistasispair(h, marker1, marker2, merge1=NULL, merge2=NULL,
model='additive', verbose=FALSE, d1=NULL, d2=NULL, main1=NULL, main2=NULL))

Arguments

h an object returned by a previous call to happy()

markers1 an array of marker names or indices

markers2 an array of marker names or indices

marker1 a single marker name or index

marker2 a single marker name or index

merge1 an optional merge object (returned by mergematrices()) determining how the
strains should be merged together for the markers listed in marker1

merge2 an optional merge object (returned by mergematrices()) determining how the
strains should be merged together for the markers listed in marker2

model the type of model fitted at each locus. Either ’additive’ or ’full’

verbose switch controlling output to screen

d1 optional design matrix for the main effect of the first marker (saves computation
time)

main1 optional log-P-value for the main effect of the first marker. NOTE: If d1 is not
NULL then main1mustbe set

d2 optional design matrix for the main effect of the second marker (saves compu-
tation time).

main2 optional log-P-value for the main effect of the second marker. NOTE: If d2 is
not NULL then main2mustbe set

family The distribution of errors in the data. The default is ’gaussian’. This variable
controls the type of model fitting. In the gauusian case a standard linear model
is fitted using lm(). Otherwise the data are fitted as a generalised linear model
using glm(), when the value of family must be one of the distributions hangled
by glm(), such as ’binomial’, ’gamma’. See family() for the full range of models.

8 gfit

Value

epistasis() returns a matrix with columns named ’marker1’, ’marker2’, ’main1’, ’main2’, ’main1+main2’,
’main1*main2’, ’main1.main2’. marker1 and marker2 are the names of the markers being compared
in a given row, the remaining values are the ANOVA log-P-values of the main effects (main1 and
main2), the combined additive effect (main1+main2), the addtive plus interaction (main1*main2)
and the partial F of the interaction (main1.main2) after allowing for main1+main2. epistasispair()
returns a list with the same fields.

Author(s)

Richard Mott

gfit Fit a Gaussian Mixture Model to an object returned by happy()

Description

gfit() fits a QTL model to a happy() object. The model is a mixture of Gaussians, each with a
different mean, and corresponds loosely to the "full" model in hfit(). The difference is that hfit() fits
the observed phenotype values to the expected phenotypes under a full model, whereas gfit() uses
maximum likelihood to fit the observed phenotype values to a mixture of Gaussians, each with a
different mean but common variance. The other functions in this suite are not usually called directly.

The statistical model fitted is as follows. Consider first the case of fitting a QTL at a locus,L. Let
y be the vector of trait values. LetXL be the design matrix for fitting a QTL at the locusL. Let
tL be the vector of parameters to be estimated at the locus. For an additive QTL, the paramters
are the strain effect sizes; for a full interaction model there is a paramter for every possible strain
combination. Then the one-QTL model is

E(y) = XLtL

There areS(S − 1)/2 parameters to be estimated in a full model allowing for interactions between
the alleles within the locus, so thei, j’th element of the design matrixX is related to the strain
probabilities thus:

XLij = FiLst

, where
j(s, t) = min(s + S(t− 1), t + S(s− 1))

In the function hfit(), the observed phenotypes are regressed directly on the expected trait values.
This is not an optimal procedure becuase the data are really a mixture:

yi∑̃stFiLstf((yi − βLst)/2σ2
L)

wheref(x) is a standard Gaussian density. TheβL is a vector of mean trait values for the strain
combinations. The parametersβL, σL are estimated by maximum likelihood, and the test for the
presence of a QTL at locusL is equivalent to the test that all theβst = µ, when the model collapses
to a single Gaussian distribution.

gfit 9

The model-fitting is implemented in the function gfit() by an iterative process, rather like a simpli-
fied version of EM. Is is slower than hfit(), and generally gives similar results as far as overall QTL
detection is concered,m but gives more accurate parameter estimates. The log-likelihood for the
data is

L =
∑

i

log(
∑

j

pij

exp(− (yi−βj)
2

2σ2)
√

2πσ2
)

=
∑

i

log(
∑

j

pij exp(− (yi − βj)2

2σ2
))− N log(2πσ2)

2

Differentiating wrt to the parameters gives

∂L

∂σ2
=
∑

i

∑
j pij(yi − βj)2 exp(− (yi−βj)

2

2σ2)

2σ4
∑

j pij exp(− (yi−βj)2

2σ2)
− N

2σ2

∂L

∂βj
= −

∑
i

pij
(yi−βj)

σ2 exp(− (yi−βj)
2

2σ2)∑
j eij

=
1
σ2

(
−
∑

i

yieij∑
j eij

+ βj

∑
i eij∑
j eij

)

write

wij =
pij exp(− (yi−βj)

2

2σ2)∑
j

pij exp(−
(yi−βj)2

2σ2)

then the mle satisfies

σ̂2 =
1
N

∑
i

∑
j pij(yi − βj)2 exp(− (yi−βj)

2

2σ2)∑
j pij exp(− (yi−βj)2

2σ2)

σ̂2 =
1
N

∑
i

∑
j

ŵij(yi − β̂j)2

β̂j =
∑

i êijyi∑
i êij

and the log-likelihood is

L̂ =
∑

i

(log
∑

j

êij)−
N log(2πσ̂2)

2

10 gfit

Usage

gfit(h,eps=1.0e-4, shuffle=FALSE, method="optim")
gaussian.loop(d, maxit=100, eps=1.0e-3, df=NULL)
gaussian.null(n, sigma2)
gaussian.init(d)
gaussian.iterate(d, params)
gaussian.fn(p, d=NULL)
gaussian.gr(p, d=NULL)

Arguments

h an object returned by a previous call to happy()

shuffle boolean indicating whether the shuffle the phenotypes to perform a permutation
test

method The optimisation algorithm. Default is to use R’s "optim" function, which uses
derivative information. All other values of this argument will use an EM type
iteration.

d a list comprising two elements d, probs

maxit the maximum number of iterations in the ML fitting

eps the terminatation accuracy in the model fitting : the log likelihood must change
by less than eps in successive iterations

df the degress of freedom to use. If NULL then this is computed as the rank of the
data

n the number of observations with non-missing phenotypes

sigma2

params a list with two components, beta = the group means and sigma = the standard
deviation

p vector of paramters. For internal use only

Value

gfit() returns a matrix with columns "marker", "LogL", "Null", "Chi", "df", "Pval", "LogPval". Each
row of the column describes the fit of the model for thecorresponding marker interval.

gaussian.loop() fits the model to a single marker and returns a list with the same elements as in hfit()

gaussian.iterate() performs a single iteration of the fitting process and returns a list with the updated
LogL, beta, sigma, dbeta and dsigma

gaussian.init() intialises the parameters under the Null model, ie to the case where the means are all
identical and the variance is the overal variance.

gaussian.null() returns the log-likelihood under the Null model

gaussian.fn() and gaussian.gr() are the function and gradient required by the optim function.

Author(s)

Richard Mott

See Also

happy, hprob

happy-internal 11

Examples

An example session:
initialise happy
Not run: h <- happy('HS.data','HS.alleles')
fit all the markers
Not run: f <- gfit(h)

happy-internal Internal Happy Functions

Description

Internal functions for happy. These are not normally called by the user

Usage

matrixSquared(matrix1, matrix2)
twofit(happy, marker1, marker2, merge1=NULL, merge2=NULL, model =
'additive', verbose=TRUE, family='gaussian')
mfit(happy, markers, model='additive', mergematrix=NULL,
covariatematrix=NULL, verbose=TRUE , family='gaussian')
condfit(happy, markers, condmarker, merge=NULL, condmerge=NULL,
model='additive',condmodel='additive', epistasis=FALSE, verbose=TRUE, family='gaussian')
strain.effects(h, fit, family='gaussian')
glmfit(formula=NA, family='gaussian')
sdp(strains, alleles)

Author(s)

Richard Mott

happyplot Plotting functions for happy model fits

Description

happyplot() will plot along the genome the log P-value that a QTL is not found in a series of marker
intervals. It accepts as input the results of hfit(), mfit() and mergefit(). mergeplot() is a convenience
function for calling happlyplot() after a call to mergefit(), with several parameters set.

Usage

happyplot(fit, mode='logP', labels=NULL, xlab='cM', ylab=NULL, main=NULL, t='s', pch=20, ...)
mergeplot(fit, mergedata, mode='logP', xlab='bp', ylab=NULL, main=NULL, t='p', pch=20, ...)

12 cache

Arguments

fit an object returned by a previous call to hfit(), mfit(), or mergefit()

mode the mode of the plot - either ’logP’, when the negative base-10 logarithm of the
ANOVA P-value of plotted, or ’SS’, when the fitting sums-of-squares is plotted

labels optional matrix detailing marker labels to be drawn on the plot. The labels are
written vertically above the plot, with vertical lines extending down into the plot
area. labels is a matrix with two named columns ’marker’, containing the marker
names, and ’POSITION’, containing the x-axis positions of the markers.

mergedata (mergeplot() only). an object returned by a previous call to mergeprepare(). This
is used to construct labels for plotting

xlab the x-axis label

ylab the y-axis label

main the titke of the plot

t the type of plot - either ’p’, ’l’, ’s’ or ’S’, with the same meanings as in plot()

pch the plotting character code, with the same meaning as in plot()

Value

A plot to the current graphics device is produced. For happyplot, if fitpermdataisnotNULL(i.e.hfit()wasrunusingthepermutationtestoption)thentheplotcontainstwostepfunctions, labelledglobal.logpandpoint.logpTheglobal.logpplotshowstheempiricallog−
pvaluerelativethewholeregion(ieadjustedforthenumberofmarkers)whilepoint.logpshowstheempiricallog−
pvalueforeachinterval.Iffitpermdata is NULL then the plots give the ANOVA logP values. If
the model used in hfit() is ’additive’ then the logP for the additive mocdel vs the null model is
plotted; if the model is ’full’ then the curves for the full, additive and partial F-test logP values are
plotted.

Author(s)

Richard Mott

See Also

hfit(), mfit(), mergefit()

Examples

Not run: h <- happy('HS.data', 'HS.alleles')
Not run: fit <- hfit(h, h$markers, model='full')
Not run: happyplot(fit)

cache Save HAPPY design matrices and genotypes to disk for rapid reload-
ing

cache 13

Description

save.genome() will persist the happy design matrices or genotypes from a series of happy
objects to disk as a collection of R delayed data packages (as implemented in the packageg.data).
load.genome() "reloads" the data, although the matrices are not actually loaded into memory
until used.load.markers() loads in a specific set of design matrices or genotypes, as defined
by thier marker names. These functions are very usefiul when access to a random selection of loci
across the genome is required, and when it would be impossible for reasons of space to load many
entire HAPPY objects into memory.save.happy() saves a single happy object as a delayed
data package.the.chromosomes() is a conveniemce funtion that generates a character vector
of chromosome names.

Usage

save.genome(gdir, sdir , prefix, chrs=NULL, model="additive", file.format="ped")
genome <- load.genome(sdir)
marker.list <- load.markers(genome, markers)
save.happy(h, pkg, dir, model="additive")

Arguments

gdir Path to the directory containing the genotype (.alleles and either .data or .ped
) input files required to instantiate happy objects. This directory wil1 typically
contain a pair of files for each chromosome of the genome of interest

sdir Path to the directory where the data will be saved bysave.genome , and read
back byload.genome() .

prefix Text fragment used to define the file names sought bysave.genome() . An
attempt is made to find files ingdir named likechrN.prefix.* where N is
the chromosome number (1...20, X, Y), as defined inchrs .

chrs List of chromosome numbers to be processed.

model Defines the type of design matrix to be stored; "additive" stores additive model
matrices, "full" stores full model matrices, and "genotype" stores genotype vec-
tors.

file.format Defines the input genotype file format, either "ped" (Ped file format) or "happy"
(HAPPY .data file format).

genome An object returned byload.genome() .

markers A vector of marker names. These names will be searched for in thegenome
object, and if found, their corresponding data retrieved.

h A HAPPY object

pkg The name of the R delayed data package to be created

autosomes The number of autosomes be be created (defualts to 19, correct for the mouse;
set this to 20 for human).

Value

save.genome() returns NULL. load.genome() returns a list object which contains infor-
mation about the delayed datapackages loaded, and how the markers are distributed between the
packages. The list comprises two components, named "genome" and "subjects". The former is
a datatable with columns "marker", "chromosome", "map", "ddp" which acts as a genome-wide
lookup-table for each marker. The latter lists the subject names corresponding to the rows in the

14 hdesign

design matrices or genotypes. NOTE: The software assumes that all the chromosome-specific files
used insave.genome() are consistent. i.e. the same subjects in the same order occur in each
chromosome, and that a marker is only present once across the genome. .markers() returns a list of
data (either matrices or genotype vectors), each datum being named accoring to the relevant marker
0chromosomes() returns a character vector of chromosome names, likec("chr1", "chr2"
..., "chrX", "chrY") .

Author(s)

Richard Mott

See Also

happy(). Note that the function happy.save() differs from save.happy(), in that it saves a single
happy object for reloading withload() ; it does not use delayed data loading.

Examples

hdesign Extract design matrix or genotypes for a specific marker interval from
a happy object

Description

hdesign() will call C to extract the design matrix to fit a QTL to a marker interval. hprob() will call
C to extract a raw probability matrix. hgenotype() will return the raw genotype data for a marker

Usage

hdesign(h, marker, model='additive', mergematrix=NULL)
hprob(h, marker=NULL)
hgenotype (h, marker, collapse=FALSE, sep="")

Arguments

h an object returned by a previous call to happy()

marker either a character string giving the name of the marker or the index of the marker
in the array h$markers

model either ’additive’ (default) or ’full’. The additive design matrix returns an array
with S columns, where S is the number of founder strains in the HS. The full
design matrix returns a matrix with S(S-1)/2 columns, one for each combination
of strains

mergematrix an object returned by mergematrices, used to define sets of strains that are to be
merged together. This is accomplished by adding the corresponding columns in
the original design matrix.

collapse a boolean variable indicating whether to collapse the alleles into a single geno-
type.

sep the text to be used to separate the alleles if collapsed.

hfit 15

Value

hdesign() returns a design matrixdij , in which theith row corresponds to the subjecti, and thejth
column to the corresponding strain or combination of strains or merged strains. () returns a matrix
i th row corresponds to the subjecti, and thex = s ∗ S + t th column contains the probability that
the ancestral strains ares, t whereS is the total number of strains. () returns aNx2 matrix i th row
corresponds to the subjecti, and column 1 contains the first allele and column 2 the second allele
at the marker specified, or (ifcollapse=TRUE) a vector of genotypes with the alleles pasted
together.

Author(s)

Richard Mott

See Also

happy(), hfit()

Examples

Not run: h <- happy('HS.data', 'HS.alleles', generations=200)
Not run: d <- hdesign(h, 1) ## the first marker interval
Not run: d <- hdesign(h, 'D1MIT264') ## the marker interval with left-hand marker D1MIT264
Not run: d <- hdesign(h, 'D1MIT264', model='full') ## ditto with full design matrix

hfit Fit a model to an object returned by happy()

Description

hfit() fits a QTL model to a happy() object, for a set of markers specified. The model can additive
or full (ie allowing for dominance effects). The test is a partial F-test. In the case of the full model
two tests are performed: the full against the null, and the full against the additive.

hfit.sequential() performs an automated search for multiple QTL, fitting marker intervals in a se-
quential manner, and testing for a QTL conditional upon the presence of previously identified QTL.
This is essentially forward selection of variables in multiple regression, and very similar to com-
posite interval mapping.

pfit() is a conveneince function to fit several univariate phenotypes to the same genotype data.

normalise() is a convenience function to convert vector of phenotype data into a set of standard
Gaussian deviates: the values are first ranked and then the ranks replaced by the corresponding
percentiles in a standard Normal distribution. This may be used to help map traits that are strongly
non-normal (or use the permute argument in hfit()).

Usage

hfit(h, markers=NULL, model='additive', mergematrix=NULL,
covariatematrix=NULL, verbose=FALSE, phenotype=NULL, family='gaussian', permute=0)

hfit.sequential(h, threshold=2, markers=NULL, model='additive',
mergematrix=NULL, covariatematrix=NULL, verbose=FALSE, family='gaussian')

16 hfit

pfit(h, phen, markers=NULL, model='additive', mergematrix=NULL,
covariatematrix=NULL, verbose=FALSE, family='gaussian')

normalise(values)

Arguments

h an object returned by a previous call to happy()

markers

model specify the type of model to be fit. Either ’additive’, where the contrinutions of
each allele at the locus are assumed to act additively, or ’full’, in which a term for
every possible combination of alleles is included. The default ’additive’ mimics
the behaviour of the original C HAPPY software.

mergematrix specify a mergematrix object (returned by mergematrices()) which describes
which founder strains are to be merged. This is used to test whether merging
strains reduces statistical significance (see mergematrices())

covariatematrix
Optional additional matrix of covariates to include in the mode. These may be
additional markers (terurned by hdesign) or covariates such as sex, age etc.

verbose control whether to print the results of the fits to the screen, or work silently (the
default)

threshold

family

permute

phen

phenotype

values a numeric vector of phenotype values to transform into normal deviates (nor-
malise() only)

Value

hfit() returns a list. The following components of the list are of interest:

table a table with the log-P values of the F statistics. The table contains rows, one per
marker interval. The columns are the negative base-10 logarithms of the F-test
P-values that there is no QTL in the marker interval. In the case of model=’full’,
the partial F-test that the full model is no better than the additive is also given.
In the special case of model=’additive’ and verbose=TRUE the effects of all es-
timable strains are compared with a T-test, taking into account the correlations
between these estimates. However, it should be noted that estimates of individ-
ual strain effects may be hard to interpret when some combinations of strains are
indistinguishable, and it is possible for the overall F-statistic to be very signifi-
cant whilst none of the strains appear to be significant, based on their T-statistics.
The F-statistic is a better indicator of the true overall fit of the model.

permdata a list containing the results of the permutation analysis, or NULL if permute=0.
The list contains the following elements:

N The number of permutations

permutation.dist A vector containing sorted ANOVA logP values from the N permutations. These
values can be used to estimate the shape of the null distribution, and plotted e.g.
using hist().

mergelist 17

permutation.pval A data table containing the permutation p-values for each marker interval. The
columns in the datatable give the position in cM, the marker name (left-hand
marker in the interval), the original ANOVA logp, the permutation pval for this
logp, and the log permutation P-value. Bothe global (ie region-wide) and point-
wise pvalues are given. The Global pvalue for a marker interval is the fraction
of times that the logP for the interval (either additive or full, depending on the
model specified) is exceeded by the maximum logP in all intervals for permuted
data. The pointwise pvalue is the fraction of permutation logP at the marker
interval that exceed the logP for that interval.

The object returned by hfit() is suitable for plotting with happyplot()

pfit() returns a list of hfit() objects, the n’th being the fit for the n’th column (phenotype) in phen.

Author(s)

Richard Mott

See Also

happy

Examples

An example session:
initialise happy
Not run: h <- happy('Hs.data','HS.alleles')
fit all the markers with an additive model
Not run: f <- hfit(h)
plot the results
Not run: happyplot(f)
fit a non-additive model
Not run: ff <- hfit(h, model='full')
view the results
Not run: write.table(ff,quote=F)
plot the results
Not run: happyplot(ff)
use noramlised trait values
Not run: ff <- hfit(h,phenotype=normalise(h$phenotypes))
permutation test with 1000 permutations
Not run: ff <- hfit(h, model='full', permute=1000)

mergelist Create an object descrbing how to merge strains together

Description

mergelist() is a convenience function which creates a list object suitable for use with mergematri-
ces()

Usage

mergelist(strains, alleles)

18 mergematrices

Arguments

strains a character vector of strain names

alleles a character matrix with one row of strain/allele combinations. There must be a
named column in the matrix corresponding to every strain name in strains. The
value of the element is the allele for that strain

Value

a list of lists of strains describing how the strains are grouped together. For instancemergelist
<- list(A=list(’AJ’, ’BALB’, ’AKR’), T=list(’RIII’,’I’, ’DBA’, ’C57’,
’C3H’)) divides the strains into two groups corresponding to the alleles A, T (the allele names
are not important). It is essential that the all strain names match all the values in strains.

The object should be used as an input parameter to mergematrices()

Author(s)

Richard Mott

See Also

mergematrices()

mergematrices Construct matrices used to merge together founder strains

Description

mergematrices() creates a list containing two matrices suitable for pre-multiplying with an additive
or full happy marker design matrix, in order to produce matrices with certain columns combined.
These reduced matrices are used to test whether the specified merge reduces the significance of the
fit. This function is not usually called directly but is used by mergfit() and hfit() megedpositionma-
trix() will return either the merged design matrix or the mergematrices object corresponding to an
object returned by mergeprepare()

Usage

mergematrices(strains, mergelist=NULL, verbose=FALSE)
mergedpositionmatrix(h, position, prepmerge, model='additive',

verbose=FALSE, design=TRUE)

Arguments

strains character array of strain names

mergelist a list of lists of strains describing how the strains are grouped together. For
instancemergelist <- list(A=list(’AJ’, ’BALB’, ’AKR’),
T=list(’RIII’,’I’, ’DBA’, ’C57’, ’C3H’)) divides the strains
into two groups corresponding to the alleles A, T (the allele names are not im-
portant). It is essential that the all strain names match all the values in strains.

verbose switch to determine whether to tell what is happening.

h an object returned by a previous call to happy()

mergeprepare 19

position the coordinate of the polymorphism to be tested, ie an entry in prepmergetestmarkerdataPOSITION

prepmerge an object returned by mergeprepare()

model the type of model to be fitted - ’additive’ or ’full’

design switch to make mergepositionmatrix return the mergematrix object rather than
the merged design matrix

Value

mergematrices() and mergepositionmatrix() return an object comprising a list with two elements:

amat the matrix to apply to an additive-model design matrix

imat the matrix to apply to a full-model (interaction) design matrix

normal-bracket30bracket-normal

Author(s)

Richard Mott

See Also

happy(), mergefit(), hfit(), mergelist()

mergeprepare Perform tests to determine whether individual polymorphisms could
have given rise to a QTL

Description

mergeprepare() reads in datafiles descrbing the locations and strain distribution patterns of poly-
morphisms (SNPs or otherwise) which have not necessarily been genotyped. The following tasks
are performed:

1. the polymorphism data are read in from testmarkerfile.For each polymorphism the correspond-
ing sketon marker interval is determined, based on their coordinates. Only those polymor-
phisms lying inside a skeleton marker interval are retained.

2. the coordinates (typically in bp rather than cM) of the genotyped markers are read in from
markerposfile. Note that these coordinates are distinct from those in the cM map in h$map
used in happy(). Only those markers listed in markerposfile that are also in h$markers are
retained - the rest are discarded. The retained markers are referred to as ’skeleton’ markers
as they define a framework of genotype data that can us used to test the significance of other
polymorphisms.

mergefit() tests each of the polymorphisms to see if it could be a QTL. It performs the following
operations on each polymorphism:

1. The founder strains are merged together based on the strin distribution pattern for that poly-
morphism.

2. The merged data are used to fit a QTL in the corresponding skeleton marker interval

3. The unmerged data are used to fir a QTL in the corresponding skeleton marker interval.

20 mergeprepare

4. The fits of the merged and unmerged data are compared with a partial F-test. If the unmerged
data are significant but the merged data are not then there is evidence to reject the polymor-
phism as being associated with the trait.

fastmergefit() is a convenience function which perfroms a complete analysis without making a prior
call to happy().

condmergefit() performs a conditional analysis in which each variant is fitted conditional upon every
other variant being included in turn. This is VERY SLOW.

Usage

mergeprepare(h, markerposfile, testmarkerfile, verbose=FALSE)
mergefit(h, mergedata, model='additive', covariatematrix=NULL,
verbose=FALSE)
fastmergefit(datafile, allelesfile, markerposfile,
testmarkerfile, generations=200, model='additive', verbose=FALSE)
condmergefit(h, mergedata, model='additive', covariatematrix=NULL,
verbose=FALSE)

Arguments

h an object returned by a previous call to happy()
markerposfile

the name of a text file containing the names and locations of the genotyped
markers. Contains two names columns ’marker’ and ’POSITION’

testmarkerfile
the name of a text file containign the names, positions and strain/allele distri-
bution patterns for each polymorphism to be tested. Contains two columns
’marker’ and ’POSITION’ plus an additional named column for each of the
strains listed in h$strains -the column names and strain names must match ex-
actly.

verbose switch to control the level of ouput sent to the screen

mergedata an object created by a previous call to mergeprepare()

model determine the type of model to be fitted - either ’additive’ or ’full’.

For the additive model it is assumed that the contribution to the phenotype from
each chromosome is additive, ie if the founder strains at the locus being tested
ares, t then the expected phenotype will be of the formTs + Tt.

For the full model the expected phenotype will be of the formTst.

Analysis of variance is used to test for differences between the estimated effects
Ts, Tst.

The additive model is a submodel of the full, so for model=’full’ in addition a
partial F-test is performed to test if the full model explains more variance than
the additive.

covariatematrix
an optional design matrix which can be used to include additional terms in the
model, such as other markers (using the matrix returned by hdesign()) and/or
other covariates such as sex, age etc

datafile the name of a genotype datafile to be passed to happy()

allelesfile the name of the corresponding alleles datafile to be passed to happy()

generations the number of generations to be passed to happy()

mergeprepare 21

Value

mergeprepare() returns a list with the following named elements:

markerpos the positions of the markers

interval an array. interval[m] contains the index of the genotyped marker interval in
which the polymorhism p is located, or NULL if it is outside all genotyped
intervals.

markers
testmarkerdata

details about the polymorphisms to be tested

normal-bracket50bracket-normal

mergefit() and fastmergefit() return an object, called say ’fit’, suitable for plotting using mergeplot().
It contains a named element ’table’ containing the log-P values as in hfit(), which can be printed
usingwrite.table(fit$table) .

condmergefit() returns a table with columns "position", "interval", "sdp", "logPself", "logPmax",
"logPmaxPosition" .

Author(s)

Richard Mott

See Also

happy(), mergeplot()

Examples

An example session:
initialise happy
Not run: h <- happy('Hs.data','HS.alleles')
prepare the merge files
Not run: prep <- mergeprepare('markers.positions','testmarkers.txt')
run the merge fit
Not run: fit <- mergefit(h, prep)
alternative, and equivalent, use of fastmergefit():
Not run:
fit <- fastmergefit('Hs.data','HS.alleles',
'markers.positions','testmarkers.txt')
End(Not run)
plot the results
Not run: mergeplot(fit, prep)

Index

∗Topic aplot
happyplot , 11

∗Topic models
cache , 12
epistasis , 6
gfit , 8
Happy , 1
happy-internal , 11
hdesign , 14
hfit , 15
mergelist , 17
mergematrices , 18
mergeprepare , 19

cache , 12
comparelist (happy-internal), 11
condfit (happy-internal), 11
condmergefit (mergeprepare), 19

epistasis , 6
epistasispair (epistasis), 6

fastmergefit (mergeprepare), 19

gaussian.fn (gfit), 8
gaussian.gr (gfit), 8
gaussian.init (gfit), 8
gaussian.iterate (gfit), 8
gaussian.loop (gfit), 8
gaussian.null (gfit), 8
gfit , 8
glmfit (happy-internal), 11

Happy , 1
happy (Happy), 1
happy-internal , 11
happyplot , 11
hdesign , 14
hfit , 15
hgenotype (hdesign), 14
hprob (hdesign), 14

introduction (Happy), 1

load.genome (cache), 12

load.markers (cache), 12

matrixSquared (happy-internal), 11
mergedpositionmatrix

(mergematrices), 18
mergefit (mergeprepare), 19
mergelist , 17
mergematrices , 18
mergeplot (happyplot), 11
mergeprepare , 19
mfit (happy-internal), 11

normalise (hfit), 15

pfit (hfit), 15

save.genome (cache), 12
save.happy (cache), 12
sdp (happy-internal), 11
strain.effects (happy-internal),

11

the.chromosomes (cache), 12
twofit (happy-internal), 11

22

	Happy
	epistasis
	gfit
	happy-internal
	happyplot
	cache
	hdesign
	hfit
	mergelist
	mergematrices
	mergeprepare
	Index

