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Investigation of sequence variation in common inbred mouse
strains has revealed a segmented pattern in which regions of high
and low variant density are intermixed. Furthermore, it has been
suggested that allelic strain distribution patterns also occur in well
defined blocks and consequently could be used to map quantita-
tive trait loci (QTL) in comparisons between inbred strains. We
report a detailed analysis of polymorphism distribution in multiple
inbred mouse strains over a 4.8-megabase region containing a QTL
influencing anxiety. Our analysis indicates that it is only partly true
that the genomes of inbred strains exist as a patchwork of
segments of sequence identity and difference. We show that the
definition of haplotype blocks is not robust and that methods for
QTL mapping may fail if they assume a simple block-like structure.

S tudies of sequence variation between inbred strains of lab-
oratory mice suggest that the distribution of polymorphisms

has a mosaic structure of alternating segments of high and low
frequency (1–3), consistent with descent of the most commonly
used strains from a few subspecies, such as Mus musculus
musculus (4). Understanding the structure of sequence variation
is important because correlations between genetic and pheno-
typic variation could help identify the molecular variants under-
lying quantitative trait loci (QTL) (1, 5), which have proved so
refractory to positional cloning (6).

The apparent mosaic structure of the mouse genome can be
exploited for QTL mapping in two ways. First, it focuses the
search for functional variants into regions of sequence variation.
Most QTL are mapped in F2 or back-crosses between inbred
strains, a method with great power to detect small effects but
with poor resolution: The 95% confidence interval often en-
compasses half a chromosome (7). The advantage of the mosaic
model is that long regions of sequence identity can be excluded
as locations for the QTL. Second, QTL mapping can be carried
out by associating phenotypic variation in inbred strains with
their strain distribution pattern (SDP) [in silico mapping (8)],
where an SDP is the pattern of allelic similarities and differences
among strains at a locus. If single-nucleotide polymorphisms
(SNPs) are randomly distributed across the genomes of inbred
strains, mapping QTL by SDP association with phenotype will
require a very dense set of markers, but if the distribution is
segmented, then a few markers will be sufficient to identify
common haplotypes. The approach is identical to the exploita-
tion of haplotype blocks (regions of complete or almost complete
linkage disequilibrium) in the human genome for association
mapping (9) but requires a different analysis to take advantage
of the small number of founder animals from which laboratory
strains are descended.

Our understanding of the distribution of polymorphisms is
largely based on studies that compare whole-genome shotgun
sequence reads, a method that gives a relatively coarse picture.
Despite the high overall density of coverage, not all variants are
assayed in all strains. If the genome is sequenced so that each
nucleotide position is covered with good-quality sequence x
times on average, then the probability that a polymorphism is not
covered in one strain will be e�x, assuming a Poisson distribution.
Hence, the probability that a site is covered in each of N strains

will be (1 � e�x)N. For example, analyzing shotgun reads
covering chromosome 16 in four strains (3, 10), enough sequence
was generated to cover the chromosome 1.3 times for each strain,
assuming every strain made an equal contribution. Although
71,000 SNPs were analyzed, just 7.8% of the genome was covered
in all strains (x � 1.3 and n � 8 gives 0.7278). An alternative
strategy is to use primer-directed sequencing, a more efficient
strategy when many strains are compared. However, sampling
has so far been carried out at a low density: Wiltshire and
colleagues (3) sequenced 2,600 evenly distributed loci at inter-
vals of �1.1 megabases (Mb) in eight inbred strains.

We do not yet know whether claims for the utility of the mosaic
structure of inbred strain sequences for QTL mapping will be
supported by higher resolution data on polymorphism distribu-
tion. Here, we report an analysis of primer-directed sequencing
that sampled, at intervals of �10 kb, a 4.8-Mb region on mouse
chromosome one in eight inbred strains (C57BL�6J, C3H�HeJ,
DBA�2J, A�J, BALB�cJ, AKR�J, RIII�DmMobJ, and I�LnJ;
hereafter referred to as C57BL�6, C3H, DBA�2, A�J, BALB�c,
AKR, RIII, and I). These strains are the progenitors of a
genetically heterogeneous stock used to map a QTL influencing
anxiety to this locus. We were thus able to investigate in more
detail the haplotype structure in a well characterized region of
the genome containing at least one QTL.

Methods
Contig Construction. We identified mouse bacterial artificial chro-
mosomes (BACs) from RPCI-23 and RPCI-24 libraries (derived
from strain C57BL�6) for sequencing (11, 12) by using already
published markers (13). We purified BAC clones by using a
Qiagen (Valencia, CA) large construction kit and used them for
end sequencing with T7 and SP6 primers. FIBERFISH was used to
confirm the BAC order and establish the extent of overlap of
clones (14).

Genomic DNA Sequencing. BACs were shotgun sequenced and
assembled as described in ref. 15. DNA from eight strains
(C57BL�6, C3H, DBA�2, A�J, BALB�c, AKR, RIII, and I), was
resequenced by amplification of genomic DNA (note that we
included the reference C57BL�6 for resequencing). DNA from
inbred lines was obtained from The Jackson Laboratory. Oli-
gonucleotide primers were designed to amplify genomic DNA in
a 50-�l PCR with 10 pmol of oligonucleotides (synthesized at
MWG Biotech, Ebersberg, Germany), 100 ng of DNA, 0.2 units
of Taq Gold, 8 mM dNTP, 8 mM 1� PCR buffer, and 25 mM
MgCl2. PCR conditions were 1 cycle at 95°C for 15 min, 95°C for
30 s, and 62°C for 30 s at 0.5°C per cycle; 13 cycles at 72°C for
60 s, 95°C for 30 s, and 58°C for 30 s; 29 cycles at 72°C for 55 s;
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and 1 cycle at 72°C for 7 min. PCR products were purified in a
96-well Millipore purification plate and resuspended in 30 �l of
H2O. Two sequencing reactions were prepared for each DNA
sample, one with the forward primer and one with the reverse
primer. The PCR reagents were removed from solution by an
ethanol precipitation in the presence of sodium acetate. All
sequencing reactions were run out on an ABI3700 sequencer and
assembled by using PHRED�PHRAP (16).

Sequence Analysis and Gene Identification. The sequenced region
was split into 40-kb consecutive regions and compared against
the National Center for Biotechnology Information nonredun-
dant protein database by using BLASTX (17). The most significant
nonoverlapping hits (E � 10�4) were superimposed on the
mouse sequence by using ARTEMIS (www.sanger.ac.uk�
Software�Artemis). Predicted mouse protein sequences were
then searched against the nonredundant protein database, and
top matches were used to predict gene structures with GENEWISE
(www.ebi.ac.uk�Wise2). Pseudogenes were identified as those
that contained no introns and those with no evidence of expres-
sion or those that included frameshifts and stop codons. Protein
sequences that were only found in rodents and no other species
were presumed to be spurious gene predictions (e.g., translated
transposable elements or endogenous retroviruses). The com-
plete sequence was also searched against a nonredundant set of
mouse cDNAs (18).

Analysis of Strain Distribution Patterns. The spatial structure of
SDPs across the sequence was determined by using a dynamic
programming algorithm that identifies blocks of contiguous
diallelic variants, each block labeled by its most frequent SDP.
The optimal block partitioning has a score that maximizes the
total number of variants whose SDP matches the corresponding
block SDP minus a factor C times the number of block transi-
tions. The positive parameter C is the cost of a block transition.
Let N be the total number of diallelic variants. Define Y(i, s) to
be the score of the optimal block partitioning for variants 1 . . .
i, subject to variant i being in a block with SDP s. Let X(i, s) �
1 if variant i has SDP s, and be 0 otherwise. Y is computed by the
recurrence relation

Y�1, s� � X�1, s� and

Y�i , s� � Maxt�Y�i � 1, t� � X�i, s� � C�1 � X�i, s�X�i, t��	,

i � 2 . . . N,

where the maximization is performed over all SDPs t. The
optimal choice of t is denoted by T(i, s). The blocks are found by
backtracking; the sequence �1, �2, . . . , �N of optimal SDPs at
each variant position is computed backwards from N, with

�N � MaxtY�N, t� and

�i � T�i � 1, �i
1� for i � N.

A block boundary occurs whenever �i differs from �i 
 1

Results
Sequence Analysis and Gene Identification. We constructed a com-
plete BAC contig of 4,785,409 bp located on chromosome 1
between megabases 142.8 and 147.6 of assembly 30 of the mouse
genome. We constructed our own contig to be certain of its
accuracy, because earlier drafts of the mouse genome were too
unreliable and unstable; however, our contig and assembly 30 are
very similar. The contig contains four gaps with an estimated
total length of �20 kb. This region corresponds to the 95%
confidence interval of a behavioral QTL (13, 19). By using a
combination of gene prediction programs and EST databases we

identified nine genes and 17 pseudogenes. There are two genes
of unknown function: BC027756, a cdc73 homologue, and
B830045N13Rik, a homologue of BMP�retinoic acid-inducible
neural-specific protein 3 (brinp3). There are three housekeeping
genes, glutaredoxin 2 (glrx2), ubiquitin carboxyl-terminal hydro-
lase isozyme L5 (uchl5) and Sjögren’s syndrome antigen A2
(ssa2). There are also four regulators of G protein signaling (rgs1,
rgs2, rgs13, and rgs18). The annotated genes were in broad
agreement with those in the University of California, Santa
Cruz, (http:��genome.ucsc.edu) and ENSEMBL (http:��mouse.
ensembl.org) genome browsers.

To determine additional regions of potential functional sig-
nificance, we compared the mouse contig with other eukaryotic
sequences. We searched the Fugu rubripes genome with TBLASTX
and retrieved 59 regions of significant homology, all of which
were components of the nine genes previously identified. To
identify conserved noncoding sequences (CNS), we made a
comparison with the syntenic region on human chromosome 1
and identified 567 regions with a sequence similarity of �70%
that extended �100 bp and that did not match any expressed
sequences.

Frequency and Distribution of Sequence Variants. We obtained
sequence data for all genes in each of the eight strains that
constitute the heterogeneous stock. First, we resequenced all
exons, including at least 1 kb of flanking sequence. Next, we
resequenced all CNS and finally a random selection of 1- to 2-kb
segments of nonconserved sequence at intervals of �10 kb over
the 4.8-Mb region. In total, we obtained 582,503 bp of finished
sequence in each of the eight strains (12.17% of the region of
interest). On average, the distance between sample sequences
was 8.2 kb.

We identified 1,720 sequence variants consisting of 258 mic-
rosatellite variants, 137 insertion deletion polymorphisms, and
1,325 SNPs (see www.well.ox.ac.uk�rmott�MOUSE for full de-
tails). Table 1 describes the overall sequence coverage within
functional (exons and introns, 5� and 3� UTRs, and CNS) and
nonfunctional regions (all remaining sequences obtained). The
estimates are commensurate with those reported for sparser
analyses of the whole genome, and they suggest that the region
is not unusual in the type and distribution of sequence variants.
Extrapolating from observed rates, the unsequenced 4.2 Mb of
DNA would be expected to yield a further 1,811 microsatellites,
1,025 indels, and 12,230 SNPs. There were no significant differ-
ences in the densities of variants for the different types of
sequence except in the coding sequences.

We investigated how many additional variants are present in
two other inbred strains (LP�J and CBA�J) by resequencing 19
contigs (17,087 bp, containing 87 variants) uniformly spaced
across the region. No new variants were found, and LP�J was
identical to DBA�2 and CBA�J to C3H and A�J at all sampled
sites.

We also resequenced a different set of 28 contigs (22,863 bp)
in three wild-derived inbred strains [CAST�EiJ, PERC�EiJ, and
SPRET�EiJ, which are known to be more genetically divergent
from the commonly used inbreds (4)] and one other unrelated
inbred strain (SENCARC�PtJ). As expected, a further 310
variants were identified. Table 2 gives the pairwise percentage
dissimilarities between all strains and shows that CAST and
SPRET are distinct from the others.

Spatial Distribution of Variants. We examined how the density of
sequence variants changes across the region and compared the
density to a random (Poisson) distribution. Our data are from
1,149 sequenced contigs. Each contig was classified as Coding
(66 contigs), Intron (60), Promoter (9), 3� UTR (8), 5� UTR (12),
CNS (567), or Nonconserved (639). Any case in which a contig
contained a mixture of types was divided and treated as two
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abutting contigs. For each class of contig c, we calculated the
average density of SNPs, �c (see Table 1). Then for a contig i of
class c(i) and length l(i), the number of SNPs in the contig should
follow a Poisson distribution with expected number of variants
r(i) � l(i)�c(i). By summing over all contigs, the expected number
of contigs with exactly n SNPs is

E�n� � �
i

e�r�i�r�i�n�n!,

with standard deviation E(n)0.5. Table 3 compares the observed
and expected numbers of contigs containing varying numbers of
SNPs. There is a significant excess of contigs with no SNPs and
a corresponding deficiency of contigs with them, indicating that
polymorphism density is clustered. Moreover, contigs with no
SNPs are approximately uniformly distributed throughout the
region, and SNP density varies in an unstructured manner across
the region with alternating SNP-dense contigs and microdeserts
(Fig. 2, which is published as supporting information on the
PNAS web site). Although it is generally true that the rates of
SNP density in each pairwise comparison fluctuate between two
extremes of high and low, there are also intermediate rates. For
example, in an 800-kb interval (between 3.8 and 4.6 Mb), three
strain comparisons (C3H versus C57BL�6, I versus C57BL�6,
and C3H versus I) show an average of 0.8 variants per 10 kb,
compared to a rate of �0.5 variants per Mb for the A�J versus
C3H comparison. Fluctuating frequency makes it difficult to
determine whether smaller deserts exist within regions of high
SNP density. For example, there are regions of 25 kb that contain
just one or two SNPs within the high-density regions in com-
parisons between I and RIII or between C3H and C57BL�6.

Strain Distribution Patterns. We next analyzed the SDP at each
sequence variant. Because there are eight strains, there are 127
possible SDPs; yet we identified just 19 SDPs among the SNPs
and indels (microsatellites were omitted from this analysis).

In Table 4, the SDPs are represented as a series of 0s and 1s
(where the first element is always 0) in the order A�J, AKR,
BALB, C3H, C57BL�6, DBA, I, and RIII. Two variants can have
the same SDP but have different alleles. The top three SDPs
account for 58% of all variants, and the top 13 for almost 99%.

We estimated how many additional SDPs would have been
detected had we sequenced the entire region by sampling from
our data the same percentage of information that we extracted
from the whole region. We performed 1,000 simulations in which
12% of the sequenced contigs were subsampled (i.e., 1.44% of
the region). The mean number of SDPs found in the sampled
data was 13.21  0.045, or 69.5% of all observed SDP. However,
the missing SDPs were rare, accounting for �2% of all variants.
If we had sequenced the entire region, we expect unobserved
SDPs to have accounted also for �2% of the total. Conse-
quently, we expect to have encountered all but the rarest SDPs.

We next examined the spatial distribution of SDPs to inves-
tigate whether we can infer the presence of regions of sequence
similarity (or haplotype blocks) from adjacent markers with the
same SDP. In Fig.1a we show the distribution of the 13 most
common SDPs (from Table 4) occurring in 1,450 diallelic
variants. The figure shows that variants with the same SDP tend
to occur nearby but, significantly, are often intermixed with
other SDPs.

To investigate the importance of SDP mixing, we devised a
dynamic programming algorithm to construct an optimal block
partition of the region. The algorithm maximizes the number of

Table 1. Classification of variants by type and context

Context bp

Insertion�deletion Microsatellite SNP

No. of
variants Rate�kb SE

No. of
variants Rate�kb SE

No. of
variants Rate�kb SE

3� UTR 6,767 2 0.296 0.209 1 0.148 0.148 10 1.478 0.467
5� UTR 783 0 0 0 0 0 0 4 5.109 2.548
CNS 42,795 4 0.093 0.047 7 0.164 0.062 91 2.126 0.223
Coding 9,291 0 0 0 0 0 0 9 0.969 0.323
Intron 144,046 40 0.278 0.044 78 0.541 0.061 337 2.34 0.127
Promoter 5,618 0 0 0 12 2.136 0.616 19 3.382 0.775
Nonconserved 373,203 91 0.244 0.026 160 0.429 0.034 855 2.291 0.078
Unsequenced

prediction
4,202,906 1,025 0.244 1,811 0.431 12,230 2.291

Shown is the length of high-quality sequence in each strain, the number of variants per kilobase, and the SE of the rate. The bottom row gives the predicted
variants in the remaining sequence.

Table 2. Dissimilarities among 12 strains based on sequence data from 28 contigs (349 variant sites)

A�J AKR BALB�c C3H C57BL�6 DBA I RIII CAST PERC SENCARC SPRET

A�J 0 5 9 0 9 9 9 9 37 11 13 76
AKR 5 0 7 5 7 7 7 7 34 8 11 74
BALB�c 9 7 0 9 0 0 0 1 34 8 5 74
C3H 0 5 9 0 9 9 9 9 37 11 13 76
C57BL�6 9 7 0 9 0 0 0 1 34 8 5 74
DBA 9 7 0 9 0 0 0 1 34 8 5 75
I 9 7 0 9 0 0 0 1 34 8 5 74
RIII 9 7 1 9 1 1 1 0 34 8 4 74
CAST 37 34 34 37 34 34 34 34 0 36 32 73
PERC 11 8 8 11 8 8 8 8 36 0 12 75
SENCARC 13 11 5 13 5 5 5 4 32 12 0 74
SPRET 76 74 74 76 74 75 74 74 73 75 74 0

Dissimilarities are expressed as the percentage of the variant sites for cases in which a pair of strains differ.
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variants that constitute the most common SDP within a single
block. The likelihood of a block transition is controlled by a
positive cost C, with low values encouraging transitions. Zhang
and coworkers (20) describe a dynamic programming algorithm
to find the block structure that minimizes the numbers of SNPs
needed to determine haplotypes. Here, our aim is different: to
make the pattern of haplotype sharing between the inbred strains
nearly constant within each block.

We show the block structure found by using C � 8 in Fig. 1b
and C � 0 in Fig. 1c. When C � 8, although the smallest number
of blocks is found, the resulting block structure fails to capture
much of the variation among the SDPs. Within each of the 13
blocks in Fig. 1b, the fidelity, defined as the percentage of
variants with the most common SDP of the block, varied from
56% to 94%, with an average of 78%. Overall, 80% of the
variants shared the major SDP for their block. Physical block
length varied from 40 kb to 1.51 Mb. The number of blocks can
be increased by reducing C but at the cost of losing much of the

larger scale structure. Moreover, the average fidelity does not
exceed 80% until C � 3 with 22 blocks. Perfect fidelity occurs
when C � 0, with 374 blocks (Fig. 1c, Table 5, and Fig. 3, which
is published as supporting information on the PNAS web site).

This analysis shows the difficulty of defining a simple block
structure when many strains are considered simultaneously.
However, the block structure in Fig. 1b can be explained in terms
of a mosaic of phylogenetic trees connecting the strains; the great
majority of variants within a block are consistent with the same
tree, indicating that Fig. 1b has biological validity. Some blocks
share the same tree, with five distinct trees occurring across the
region (Fig. 4, which is published as supporting information on
the PNAS web site). Gene conversion events might explain some
of the alternating tree patterns observed.

Discussion
We report here the most detailed study to date of local poly-
morphism distribution in multiple inbred mouse strains. We
analyzed a 4.8-Mb region on chromosome 1, selected because it
contains a QTL influencing anxiety in mice, but we see no reason
why the conclusions we draw should not be applicable to other
genomic regions. Some of our findings are reminiscent of
observations on the distribution of haplotype blocks in the
human genome, where a number of mechanisms could explain
the observation of long tracts of linkage disequilibrium (21–23).
Our data confirm that the distribution of sequence variants in the
genomes of common inbred mouse strains is not random, but the
data also indicate that there are important limitations to ex-
ploiting the haplotype structure for QTL mapping.

First, SNP deserts (regions that have very few SNPs in a
comparison between two strains) vary considerably in the fre-
quency of variants, complicating their use to exclude regions
from containing QTL. In some cases the strategy may work: We
found only 2 SNPs that distinguish A�J and C3H in the entire 4.8
Mb, so a QTL mapped in a cross between A�J and C3H could
be excluded from this region. By contrast, there are 38 SNPs that
differentiate C3H and C57BL�6 in a 1.3-Mb region (3.3–4.6
Mb); a similar density was found in comparisons between I and
C57BL�6. Although it is reasonable to describe SNP distribution
as bimodal with some regions of high density and some of low
density, there is considerable variation within the high-density
regions, with an excess of microdeserts.

To what extent is the current picture of the distribution of SNP
deserts based on how densely the genome has been sampled?
Our data are for a SNP-dense region, but 64% of the contigs we
sequenced contained no variants. Consequently, if M 1-kb
segments were sampled at random across a SNP-dense region in
the genome, the probability that none contained a SNP in all
eight strains, would be 0.64M. If SNPs were 200 kb apart and M �
5, then 10% of the time, a 1-Mb desert would be reported
incorrectly. Very long deserts are more likely to be genuine, as
the A�J versus C3H comparison shows.

A second concern is the difficulty of defining an accurate
haplotype block structure. Our analysis indicates it is unsafe to
assume that a high-fidelity haplotype block exists between
markers that share the same SDP. Although variants with the
same SDP tend to be clustered together, they do not generally
occur in simple blocks. This point is critical for in silico mapping
strategies that attempt to correlate phenotypic variation to
haplotypes: The presence of a QTL is indicated by finding an
SDP block (or haplotype) common to diverse inbred strains that
also share a phenotype. If we insist on perfect agreement of
SDPs to define a block, then the 5-Mb region contains 374
distinct blocks (Table 5); if the region were fully resequenced, the
blocks would likely be further fragmented. Consequently in silico
haplotype mapping based on a sparse marker density will have
an unacceptably high false-negative rate for QTL detection.

Table 3. Expected and observed number of variants per
sequenced contig

No. of variants
per contig

Observed
frequency

Expected
frequency SD*

0 734 412.27 20.30
1 191 260.41 16.14
2 99 188.91 13.74
3 38 128.12 11.32
4 25 73.23 8.56
5 19 36.39 6.03
6 9 16.87 4.11
7 9 8.07 2.84
8 5 4.43 2.10
9 2 2.91 1.71

�9 19 18.38 4.29

*SD of the values given for expected frequency.

Table 4. Frequencies of SDP

SDP Count (%)
Cumulative
percentage

Common variants
01000101 349 (23.82) 23.82
01101111 320 (21.84) 45.67
01101100 183 (12.49) 58.16
00101111 120 (8.19) 66.35
00000001 105 (7.17) 73.52
00101000 88 (6.01) 79.52
01000000 72 (4.92) 84.44
01000111 56 (3.82) 88.26
01101110 43 (2.94) 91.20
00000011 40 (2.73) 93.93
00000010 29 (1.98) 95.90
01000100 25 (1.71) 97.61
00101110 20 (1.37) 98.98

Rare variants
00101010 6 (0.41) 99.39
00101011 4 (0.27) 99.66
00010000 2 (0.14) 99.80
00100000 1 (0.07) 99.86
00001000 1 (0.07) 99.93
00000100 1 (0.07) 100.00

Each SDP is represented as a string of 0s and 1s, with the first element
constrained to be 0. Shown is the frequency at which the SDP was observed
and the cumulative percentage of variants for a given SDP.
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Furthermore, our results indicate that haplotype analysis may
not provide as high a resolution for mapping as some have
predicted. Wade and colleagues (1) estimate in a comparison
between C57BL�6 and 129 that �90% of the genome can be
classified as either high (45 per 10 kb) or low (1.0 per 10 kb) SNP
content occurring in segments with an average size of 1.2 Mb.
Consequently, a QTL could be mapped into a region of about 2
Mb by using sequence variant information, and combining
mapping information from additional strains could further re-
duce the interval (3, 5).

However, our data argue that increasing the number of
strains for QTL mapping would not increase resolution to the
expected extent. Assuming that block boundaries occur ran-
domly with a mean block length of L bp and that each strain
is independent, the SDP pattern among N strains would be
expected to change every L�(N � 1) bp on average. Conse-
quently if L � 1.2 Mb, mapping resolution with eight strains
should be 1.2�(8 � 1) � 0.17 Mb. In fact, all of our 13 blocks
are much larger, with a mean length of 4.8�12 � 0.4 Mb, over
twice that of Wade and colleagues (1) (the 13 blocks in Fig. 1b
were treated as 12 because the first and last blocks were
unbounded).

Our observations do not invalidate attempts to map QTL by
using the mosaic structure of sequence variation in inbred
mouse strains, but they do impose some restrictions on the
methods. We argue that successful QTL mapping requires
complete sequence information, so that we can avoid using
blocks altogether by characterizing any region by the distri-
bution of its SDP frequencies and mapping QTL by trait-SDP
association. A QTL would correspond to any region dense in
SDPs associated with the trait. Alternatively, by interpreting
the block structure as a phylogenetic mosaic, it might be
possible to map QTL by using a block-based strategy, con-
straining any functional variant within a block to be consistent
with the block’s phylogenetic tree (24).

It might be thought that using complete sequence informa-
tion from multiple strains would impose an intolerably high
significance threshold for detecting QTL, but this is not the
case. Statistical power to detect QTL will be affected by the
number of independent tests to be performed, which depends
on the number of SDPs or trees across the genome rather than
the number of variants. Our analysis suggests that only a
limited number of SDPs will occur. Although theoretically the

Fig. 1. Haplotype structure of 1,450 diallelic variants with SDP frequency �1% between eight inbred strains across a 4.8-Mb region of mouse chromosome 1.
The region is represented along the horizontal axis and scaled such that the nth coordinate from the left edge corresponds to the nth variant, broken into two
parts for clarity with the top section showing the first 725 variants and the bottom showing the remainder. (a) The alternating gray and white tracks show the
spatial arrangement of the 13 most common SDP arranged from top to bottom in the same order as in Table 4 (so that the top SDP is 01000101 and the bottom
SDP is 00101110). Each track represents one SDP, with a bar on the track at points where the corresponding variant has that SDP. (b) The gray and orange bands
show the block partitioning produced by a dynamic programming algorithm that identifies an optimal partition that minimizes the SDP heterogeneity within
each block, subject to a block transition cost C � 8 (see Methods). The strains are (top to bottom) A�J, AKR, BALB�c, C3H, C57BL�6, DBA�2, I, and RIII. Block
boundaries are white vertical lines. Within each block, the major SDP is indicated by the black and orange horizontal bands. Strains with the same color have
the same allele. (c) The optimal block partitioning for C � 0, i.e., perfect SDP fidelity within each block. Boundaries are not shown because many blocks have
a length of 1 bp and would therefore be invisible.

Table 5. SDP block structure

C No. of blocks Block fidelity, % Variant fidelity, %

0 374 100.0 100.0
1 71 86.6 87.6
2 31 81.4 84.1
3 22 80.3 82.6
4 17 78.2 81.4
5 15 76.7 80.7
6 15 76.7 80.7
7 14 75.7 80.3
8 13 77.6 79.8
9 11 76.6 78.6

10 11 76.6 78.6
11 11 76.6 78.6
12 11 76.6 78.6
13 11 76.6 78.6
14 11 76.6 78.6

Data were obtained from 1,450 common diallelic variants by varying the
block transition cost C. Shown are the number of SDP blocks, the percentage
average fidelity per block and the percentage of variants whose SDP matched
the major SDP of their block.

9738 � www.pnas.org�cgi�doi�10.1073�pnas.0401189101 Yalcin et al.



number of SDPs is 2N � 1, it is more likely that there will be far
fewer, perhaps of the order N, if the strains can be fitted on to
a small number of phylogenetic trees. However we do not yet
know how the number of SDPs across the genome depends on
the number of strains. Should many SDPs occur, higher
mapping resolution would be possible, but at the cost of lower
power or more false positives.

The picture of the laboratory mouse genome as a mosaic of
internally consistent haplotype blocks might not be the best view
from the standpoint of QTL mapping experiments. If a QTL is
caused by a single diallelic variant, then all nearby variants with
the same SDP will appear to be functional candidates as well. It
will be more fruitful for QTL mapping to treat the SDP

distribution across the genome in a probabilistic manner, in
which regions are characterized by their SDP profiles. The
consequences of the haplotype structure presented here for
mapping the behavioral QTL in the region are discussed else-
where. We require a method that can assign the probability that
any variant is the QTL and then test that likelihood against
others, thereby providing a ranking of QTL sequences for
functional investigation.
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